A 回答 (2件)
- 最新から表示
- 回答順に表示
No.2
- 回答日時:
f(x)=x^2ーx∫ 0→2 f(t)dt+2∫ 0→1 f(t)dt
∫ 0→2 f(t)dt=A …(1) ,∫0→1 f(t)dt=B …(2) とおく
f(x)=x^2ーx・A+2B …(5)
A=∫ 0→2 f(t)dt=∫ 0→2 (t^2ーAt+2B)dt=[t^3/3ーAt^2/2+2Bt]2…0
=8/3ー2A+4B
∴ 3Aー4B=8/3 …(3)
B=∫ 0→1 f(t)dt=∫ 0→1 (t^2ーAt+2B)dt=[ t^3/3ーAt^2/2+2Bt]1…0
=1ーA/2+2B
∴ A/2ーB=1 …(4)
∴B=A/2ー1を(3)に代入
3Aー4(A/2ー1)=8/3
∴ A+4=8/3 ∴ A=8/3ー4=ー4/3 B=(-4/3)/2ー1=ー2/3ー1=ー5/3
よって、(5)から、f(x)=x^2+(4/3)xー10/3
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 f(x)=2x+∮(0~1)(x+t)f(t)dt を満たす関数f(x)を求めよ。 3 2022/07/05 22:54
- 数学 R上の実数値連続関数fが周期pを持つならば次式か成り立つことを示せ。 ∫[x→x+p] f(t)dt 2 2022/09/13 10:38
- 工学 周波数fで表現したフーリエ変換の対称性に関する質問です。 1 2022/09/14 12:27
- 数学 f(x) を周期 T >0 の周期関数とするとき ∫(0~x)f(t)dt が周期 T >0の周期関 2 2022/12/13 18:21
- 物理学 物体に一定の大きさfの力をx軸の正の向きに加える。またこの物体には抵抗係数がγの速度に比例する抵抗力 2 2023/07/06 04:01
- 数学 数学の問題が分かりません! 次の関数y=f(x)の逆関数y=f^-1(x)を求めよ. ※答えが2次関 3 2023/06/22 19:22
- 数学 【 数学 一次関数 】 問題 f(1)=-7,f(3)=-13を満たす1次関数f(x)を求めよ。 疑 4 2022/10/23 17:50
- 数学 高校数学で質問があります。 2 2023/02/13 16:40
- 数学 多変数関数の微分とテイラー展開について 5 2022/04/24 16:55
- 数学 1変数関数に陰関数ってあるんですか? 1変数関数は f(x)=xの式 f(x)はxの値で決まるもの( 4 2023/05/08 18:47
このQ&Aを見た人はこんなQ&Aも見ています
-
10代と話して驚いたこと
先日10代の知り合いと話した際、フロッピーディスクの実物を見たことがない、と言われて驚きました。今後もこういうことが増えてくるのかと思うと不思議な気持ちです。
-
スマホに会話を聞かれているな!?と思ったことありますか?
スマートフォンで検索はしてないのに、友達と話していた製品の広告が直後に出てきたりすることってありませんか? こんな感じでスマホに会話を聞かれているかも!?と思ったエピソードってありますか?
-
遅刻の「言い訳」選手権
よく遅刻してしまうんです…… 「電車が遅延してしまい遅れました」 「歯医者さんが長引いて、、、」 「病院が混んでいて」 などなどみなさんがこれまで使ってきた遅刻の言い訳がたくさんあるのではないでしょうか?
-
プリン+醤油=ウニみたいな組み合わせメニューを教えて!
プリンと醤油を一緒に食べると「ウニ」の味がする! というような意外な組み合わせから、新しい味になる食べ物って色々ありますよね。 あなたがこれまでに試した「組み合わせメニュー」を教えてください。
-
14歳の自分に衝撃の事実を告げてください
タイムマシンで14歳の自分のところに現れた未来のあなた。 衝撃的な事実を告げて自分に驚かせるとしたら何を告げますか?
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を満たす関数f(x)を求めよ。
数学
-
数学 定積分の問題です。 関数f(x)が任意の実数xに対して、 f(x)=x^2-∮[0→x] (x
数学
-
順列
中学校
-
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~12/6】 西暦2100年、小学生のなりたい職業ランキング
- ・ちょっと先の未来クイズ第5問
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
次の等式を満たす関数f(x)を求...
-
差分表現とは何でしょうか? 問...
-
マクローリン展開
-
絶対値を外すときの判別式の利...
-
f(x) g(x) とは?
-
z^5=1の虚数解の一つをαと置く...
-
次の解析学の問題がわからない...
-
∫[x=0~∞]logx/(1+x^2)の広義積...
-
微分について
-
どんな式でも偶関数か奇関数の...
-
大学への数学(東京出版)に書...
-
数学の f(f(x))とはどういう意...
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
数III 微分の質問です。
-
左上図、左下図、右上図、右下...
-
微小量とはいったいなんでしょ...
-
導関数と微文法
-
関数f(x)はx>0においてf'(x)<...
-
ベクトルの定義です・・
-
ニュートン法について 初期値
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
差分表現とは何でしょうか? 問...
-
f(x) g(x) とは?
-
数学の f(f(x))とはどういう意...
-
"交わる"と"接する"の定義
-
二次関数 必ず通る点について
-
ニュートン法について 初期値
-
次の等式を満たす関数f(x)を求...
-
次の関数の増減を調べよ。 f(x)...
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
微小量とはいったいなんでしょ...
-
数学II 積分
-
微分について
-
二重積分を使った回転体の体積...
-
三次関数が三重解を持つ条件とは?
-
微分の公式の証明
-
左上図、左下図、右上図、右下...
-
数学の洋書を読んでいて分から...
-
関数 f(x) = e^(2x) につい...
-
どんな式でも偶関数か奇関数の...
-
フーリエ変換できない式ってど...
おすすめ情報