
No.2ベストアンサー
- 回答日時:
必要性:
F(x) = ∫(0~x)f(t)dt が周期 T を持つなら、
∫(0~T)f(t)dt = F(T) = F(0) = ∫(0~0)f(t)dt = 0.
十分性:
∫(0~T)f(t)dt = 0 が成り立つなら、
F(x+T) = ∫(0~x+T)f(t)dt = ∫(0~T)f(t)dt + ∫(T~x+T)f(t)dt
= 0 + ∫(0~x)f(u+T)du ;t=u+Tで置換
= 0 + ∫(0~x)f(u)du ;f()は周期Tを持つ
= F(x).
No.1
- 回答日時:
T>0
f(x+T)=f(x)
----------
∫_{0~x}f(t)dtが周期T>0の周期関数ならば
∫_{0~x+T}f(t)dt=∫_{0~x}f(t)dt
↓x=0とすると
∫_{0~T}f(t)dt=∫_{0~0}f(t)dt
↓∫_{0~0}f(t)dt=0だから
∴
∫_{0~T}f(t)dt=0
である
---------------
∫_{0~T}f(t)dt=0ならば
∫_{0~x+T}f(t)dt-∫_{0~x}f(t)dt
=∫_{x~x+T}f(t)dt
=∫_{x~T}f(t)dt+∫_{T~x+T}f(t)dt
=∫_{x~T}f(t)dt+∫_{0~x}f(s+T)ds
↓f(s+T)=f(s)だから
=∫_{x~T}f(t)dt+∫_{0~x}f(s)ds
=∫_{x~T}f(t)dt+∫_{0~x}f(t)dt
=∫_{0~x}f(t)dt+∫_{x~T}f(t)dt
=∫_{0~T}f(t)dt
=0
∴
∫_{0~x+T}f(t)dt=∫_{0~x}f(t)dt
だから
∫_{0~x}f(t)dtは周期T>0の周期関数である
---------------------
∴
∫_{0~x}f(t)dtが周期T>0の周期関数であるための必要十分条件は
∫_{0~T}f(t)dt=0である
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 R上の実数値連続関数fが周期pを持つならば次式か成り立つことを示せ。 ∫[x→x+p] f(t)dt 2 2022/09/13 10:38
- 工学 周波数fで表現したフーリエ変換の対称性に関する質問です。 1 2022/09/14 12:27
- 数学 -π<x≦π、f(x)=|sinx|+1 である周期関数f(x)のフーリエ級数を求めよという問題の解 1 2023/02/06 18:20
- 数学 -π<x≦π、f(x)=|sinx|+1 である周期関数f(x)のフーリエ級数について、 an=4/ 1 2023/02/10 14:18
- 数学 複雑な三角関数の周期の求め方 2 2022/10/04 16:44
- 物理学 写真の問題の赤線部分についてですが、 なぜ、「y1…x=0の山と、y2…x=6の山」(それぞれを1/ 4 2022/08/28 13:29
- 数学 離散フーリエ逆変換が周波数分割数をNにできる理由について 4 2022/09/18 12:56
- 統計学 確率の問題です。 7 2022/05/07 01:08
- 数学 常微分方程式 1 2023/06/21 19:54
- 数学 f(x)=2x+∮(0~1)(x+t)f(t)dt を満たす関数f(x)を求めよ。 3 2022/07/05 22:54
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
"交わる"と"接する"の定義
-
f(x) g(x) とは?
-
微分について
-
統計学
-
数学の f(f(x))とはどういう意...
-
関数 f(x) = e^(2x) につい...
-
eのx乗はeのx乗のまんまなのに...
-
数学 fとf(x) の違いについて
-
αを代数的数とし、f(x)⊂Z[x]を...
-
lim[x→0] x/(e^x-1) を計算する...
-
数学 定積分の問題です。 関数f...
-
楕円積分
-
Henselの補題の証明で質問です。
-
次の等式を満たす関数f(x)を求...
-
左上図、左下図、右上図、右下...
-
数1 2つの二次関数の大小関係 ...
-
複素関数f(z)のテーラー展開や...
-
数学Ⅱの問題です。 解説お願い...
-
剰余の定理
-
関数方程式 未知関数
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(x) g(x) とは?
-
左上図、左下図、右上図、右下...
-
数学の f(f(x))とはどういう意...
-
微小量とはいったいなんでしょ...
-
"交わる"と"接する"の定義
-
差分表現とは何でしょうか? 問...
-
微分について
-
【数3 式と曲線】 F(x、y)=0と...
-
数学の記法について。 Wikipedi...
-
ニュートン法について 初期値
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
三次関数が三重解を持つ条件とは?
-
次の等式を満たす関数f(x)を求...
-
次の関数の増減を調べよ。 f(x)...
-
問431,不等式x⁴-4x³+28>0を証...
-
関数が単調増加かどうか調べる...
-
なんで(4)なんですけど 積分定...
-
関数方程式f(x)=f(2x)の解き方...
-
積分する前のインテグラルの中...
-
どんな式でも偶関数か奇関数の...
おすすめ情報