
A 回答 (2件)
- 最新から表示
- 回答順に表示
No.1
- 回答日時:
f(x)=x^4ー4x^3+28 とおく f(x)>0の証明!
f'(x)=4x^3ー12x^2=4x^2(xー3) から、極値は、x=3,0 だが
f''(x)=12x^2ー24x=12x(xー2) から、変曲点は、x=0,2
増減表は、
……………0………2………3……………
f''(x)………0………0…………………
f'(x) ↘ 0 ↘ ↘ 0 ↗
f(x) ∞ 28 ↘ 12 ↘ 1 ∞
以上から、f(x)>0である。
グラフの概形は、∞ から、0で変曲して下がり、2で、変曲し、x=3で極小値をとり∞に行く
なお、x=0は、極値よりも変曲点であり、x=2の変曲点よりも、はっきりしている!
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 高一数学 二次関数画像あり 〔 チャート 94ページ 問題練習118番 〕 この問題の不等式はの答え 5 2023/08/19 15:59
- 工学 制御工学の問題です。 3 2023/01/23 22:32
- 数学 数2Bの数列の問題です。 自分は、 まず数列 an=ar^(n-1)と置き こちらの問題の、y= の 1 2022/07/07 16:26
- 数学 高一数学二次関数 画像あり 〔 チャート 89ページ 問題練習112番 〕 (2)です。 再び申し訳 2 2023/08/23 13:58
- 数学 高一数学二次関数 画像あり 〔 チャート 89ページ 問題練習112番 〕 (2)です。 このような 3 2023/08/21 17:24
- 発達障害・ダウン症・自閉症 【画像あり】中3の受験期に解けなかった問題について。n,n+1,n+2,n+3…という文字式の証明と 1 2022/08/04 15:48
- 数学 分数方程式を解く際にグラフを描く必要はあるのですか? 2x-1/(x-1)=x+1 のような分数方程 2 2022/12/17 16:05
- 計算機科学 2次導関数の問題です。お詳しいかた教えてください。 3 2022/08/07 21:17
- 化学 化学についてです。 2s軌道と2p軌道について、①動径波動関数、②動径分布関数、③角波動関数の概略図 1 2023/01/07 00:50
- 数学 数Ⅱ 方程式の解の判別 7 2023/05/11 19:23
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
"交わる"と"接する"の定義
-
f(x) g(x) とは?
-
微分について
-
統計学
-
数学の f(f(x))とはどういう意...
-
関数 f(x) = e^(2x) につい...
-
eのx乗はeのx乗のまんまなのに...
-
数学 fとf(x) の違いについて
-
αを代数的数とし、f(x)⊂Z[x]を...
-
lim[x→0] x/(e^x-1) を計算する...
-
数学 定積分の問題です。 関数f...
-
楕円積分
-
Henselの補題の証明で質問です。
-
次の等式を満たす関数f(x)を求...
-
左上図、左下図、右上図、右下...
-
数1 2つの二次関数の大小関係 ...
-
複素関数f(z)のテーラー展開や...
-
数学Ⅱの問題です。 解説お願い...
-
剰余の定理
-
関数方程式 未知関数
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(x) g(x) とは?
-
左上図、左下図、右上図、右下...
-
数学の f(f(x))とはどういう意...
-
微小量とはいったいなんでしょ...
-
"交わる"と"接する"の定義
-
差分表現とは何でしょうか? 問...
-
微分について
-
【数3 式と曲線】 F(x、y)=0と...
-
数学の記法について。 Wikipedi...
-
ニュートン法について 初期値
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
三次関数が三重解を持つ条件とは?
-
次の等式を満たす関数f(x)を求...
-
次の関数の増減を調べよ。 f(x)...
-
問431,不等式x⁴-4x³+28>0を証...
-
関数が単調増加かどうか調べる...
-
なんで(4)なんですけど 積分定...
-
関数方程式f(x)=f(2x)の解き方...
-
積分する前のインテグラルの中...
-
どんな式でも偶関数か奇関数の...
おすすめ情報