
No.2ベストアンサー
- 回答日時:
2π∬Dydxdyを知らないものとします。
領域Dがa≦x≦b、f(x)≦y≦g(x)で表わされるものとします。
領域Dをx軸のまわりに一回転して出来る回転体をx軸に垂直な
平面で切った図形の面積はπg(x)^2―πf(x)^2=π{g(x)^2―f(x)^2}
です。
これをx軸方向に積分して回転体の体積Vを求めると、
V=∫(a≦x≦b)π{g(x)^2―f(x)^2}dx
=π∫(a≦x≦b)[y^2](f(x)→g(y))dx
=π∫(a≦x≦b)∫(f(x)≦y≦g(x))2ydydx
=2π∫(a≦x≦b)∫(f(x)≦y≦g(x))ydydx
=2π∫∫Dydydx
Dが複雑な図形で、Dの境界とx軸と垂直な直線との交点が2個より
多い時は、Dを分割して考えれば良いと思います。
直感的には、Dをx軸、y軸に平行な直線たちで無限に細かい四角形た
ちに分割します。一つの小さい四角形[x,x+dx]×[y,y+dy]をx軸の回り
に1回転してできるものすごい細いパイプ状の回転体の体積は、近似的
に2πy×dxdyと考えられます。(面積dxdyの四角形を半径yの円周上に
回転)これをD全体でかき集めれば、
V=2π∫∫Dydydx
あるいは、Dの重心の座標を(x0,y0)とすると、
V=(Dの面積)×(y0の移動距離)=(Dの面積)×2πy0
もあります。(かの有名なパップス・ギュルダンの定理)
この回答へのお礼
お礼日時:2007/02/11 04:14
ありがとうございます。とてもご丁寧に教えてくださったおかげでよく理解できました。何気ない疑問点がパップスギュルダンの定理にまでつながることが分かってビックリしました。ありがとうございます。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 x軸をまたぐ場合について考えてます。 それぞれ体積、表面積の立式は合ってますか? y=b±√(a 2 2023/05/21 17:05
- 数学 重積分の積分領域について D={(x,y)∈R^2 | 0≦y≦x≦∞} で表される領域で、∫[0→ 3 2023/05/05 23:33
- 数学 第4問 座標平面上に3点 A(1, 1),B(1, 5), C(7, 3) を頂点とするABCがある 2 2022/10/01 14:53
- 数学 ガブリエルのホルンと呼ばれる漏斗状の回転面があります。このホルンは体積は有限であるにもかかわらず、面 2 2023/02/03 15:24
- 固定資産税・不動産取得税 マンションの土地の不動産取得税と固定資産税の計算方法の違いについて 2 2022/10/24 21:59
- その他(コンピューター・テクノロジー) 50台の織機から回転数を取得・集計しモニターに表示したい 2 2022/11/05 15:48
- 数学 正八面体の8面を、7色A~Gで塗り分ける方法は何通りあるか(隣り合う面は同じ色でもいいが、回転して一 1 2022/08/04 23:06
- 工学 至急お願いします。 誘電体と接する導体表面に面密度のσ正の電荷を一様に与えると、境界面には応力が発生 1 2022/07/31 02:27
- 数学 教えてくださいいい 1辺がacmの立体Aと、1辺がbcmの立体Bがある。立体Aの表面積と立体Bの表面 4 2022/06/11 16:57
- 物理学 熱力学 エントロピー 断熱自由膨張 熱力学第2法則 クラウジウスの不等式 2 2022/07/14 12:58
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
微分について
-
一般的にこれは成り立つのでし...
-
数学の f(f(x))とはどういう意...
-
関数方程式 未知関数
-
数学にでてくるf(x)とかいうの...
-
大学への数学(東京出版)に書...
-
定積分と図形の面積
-
a^8+a^6+5a^4+4a^2+4の因数分解
-
積分する前のインテグラルの中...
-
導関数と微文法
-
微分の公式の導き方
-
微分
-
「次の関数が全ての点で微分可...
-
極限操作は不等号関係を保存し...
-
f(x)=xe^-2xの極大値
-
関数の極限
-
左上図、左下図、右上図、右下...
-
【数3 式と曲線】 F(x、y)=0と...
-
線形2階微分方程式と非線形2...
-
差分表現とは何でしょうか? 問...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(x) g(x) とは?
-
左上図、左下図、右上図、右下...
-
数学の f(f(x))とはどういう意...
-
微小量とはいったいなんでしょ...
-
"交わる"と"接する"の定義
-
差分表現とは何でしょうか? 問...
-
微分について
-
【数3 式と曲線】 F(x、y)=0と...
-
数学の記法について。 Wikipedi...
-
ニュートン法について 初期値
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
三次関数が三重解を持つ条件とは?
-
次の等式を満たす関数f(x)を求...
-
次の関数の増減を調べよ。 f(x)...
-
問431,不等式x⁴-4x³+28>0を証...
-
関数が単調増加かどうか調べる...
-
なんで(4)なんですけど 積分定...
-
関数方程式f(x)=f(2x)の解き方...
-
積分する前のインテグラルの中...
-
どんな式でも偶関数か奇関数の...
おすすめ情報