No.2ベストアンサー
- 回答日時:
f(x)=ax^2+bx+cとおいて積分の条件から係数a,b,cを決めればよい。
∫(-1~1)f(x)dx=(ax^3/3+bx^2/2+cx)(-1~1)=2a/3+2c=0 (1)
∫(0~2)f(x)dx=(ax^3/3+bx^2/2+cx)(0~2)=8a/3+4b/2+2c=10 (2)
∫(-1~1)xf(x)dx=(ax^4/4+bx^3/3+cx^2/2)(-1~1)=2b/3=4/3 (3)
(1)~(3)をa,b,c,に関する連立方程式とみて解けばよい。
答え
a=3
b=2
c=-1
No.1
- 回答日時:
こんばんわ。
2次関数は、係数が 3つ求まればよいですね。
条件式も 3つあるので、単純に連立方程式を解くことになります。
ということは、あまり深く考える必要はないということです。
1番目と 3番目の条件式は、偶関数・奇関数の性質を使えば少し計算が楽になります。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 積分と不等式 2 2023/01/26 21:52
- 数学 解析学の問題がわかりません 1 2023/01/12 22:59
- 数学 問 任意の実数a,bと実数関数f(x)に対して ∮(a→b) |f(x)|dx=0ならばf(x)=0 3 2022/07/17 01:30
- 数学 写真の数学の問題についてです。 (x+ky/2+1/2√Dx)(x+ky/2−12√Dx) の√Dを 5 2023/03/16 09:48
- 大学・短大 累積分布関数F(x)の計算の仕方を教えてください。 3 2022/06/12 07:39
- 数学 解析学の問題がわからず困っています。 2 2023/01/12 23:07
- 数学 f(x,y)=-2y/(x^2+y^2) という関数を不定積分すると、 ∫ -(2y)/(x^2 + 2 2023/06/12 20:25
- 数学 線形代数学の問題です! Vは 4 次元ベクトル空間とし線形変換 f ∶ V→ V のある基底 v1, 1 2022/06/12 09:25
- 数学 区間[0,1]で連続な関数f(x)について、 ∮[0→π]xf(sinx)dx=π∮[0→π/2]f 2 2023/01/19 14:13
- 高校 数学III 積分 数学IIIの積分でf(ax+b)の積分公式がありますが b=0の時どのように考えれ 4 2022/09/30 02:06
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・【大喜利】【投稿~11/12】 急に朝起こしてきた母親に言われた一言とは?
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・好きな「お肉」は?
- ・あなたは何にトキメキますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・ハマっている「お菓子」を教えて!
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
差分表現とは何でしょうか? 問...
-
f(x) g(x) とは?
-
ニュートン法について 初期値
-
積分の問題。次の条件を満たす2...
-
次の等式を満たす関数f(x)を求...
-
関数 f(x) = e^(2x) につい...
-
微小量とはいったいなんでしょ...
-
極限を調べるときプラス極限マ...
-
大学の問題です。
-
微分の公式の導き方
-
掛け算も足し算も同じ値
-
どんな式でも偶関数か奇関数の...
-
数学II 積分
-
方程式の解について
-
大学への数学(東京出版)に書...
-
「xを限りなく大きくする時、f(...
-
積分する前のインテグラルの中...
-
"交わる"と"接する"の定義
-
26~32の問題の解き方と答えを...
-
次の関数の増減を調べよ。 f(x)...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(x) g(x) とは?
-
数学の f(f(x))とはどういう意...
-
差分表現とは何でしょうか? 問...
-
"交わる"と"接する"の定義
-
次の関数の増減を調べよ。 f(x)...
-
三次関数が三重解を持つ条件とは?
-
ニュートン法について 初期値
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
次の等式を満たす関数f(x)を求...
-
微小量とはいったいなんでしょ...
-
二次関数 必ず通る点について
-
微分について
-
左上図、左下図、右上図、右下...
-
数学II 積分
-
数学 定積分の問題です。 関数f...
-
どんな式でも偶関数か奇関数の...
-
フーリエ変換できない式ってど...
-
数学についてです。 任意の3次...
-
大学の問題です。
-
Gnuplotについて エラーメッセ...
おすすめ情報