No.4ベストアンサー
- 回答日時:
2次関数に関わらず、定数を含む関数は定点を通ります。
定点の求め方は
1)定数:aを含む項と含まない項に分けます。
2)定数:aの係数=0、定数項=0として、x,yについて連立方程式を立て解きます。
このときの x,yが定点の座標になります。
いまの問題では、次のようにします。
1) y= x^2- 2ax+ 2a+ 3より (x^2- y + 3)+ a*(-2x+2)= 0
2) -2x+ 2= 0, x^2- y + 3= 0を連立させて解きます。
「x,y以外の定数が現れたときは、その定数について整理してみる」
いまのような問題でも、因数分解をするような問題でも
よく使われる方法なので覚えておくといいと思います。
すっごく分かりやすかったです!
定数項=0としたら、定点が求まるんですね!
これで同じような問題が出ても、大丈夫☆
丁寧な回答、ありがとうございました。
No.5
- 回答日時:
簡単にいうと、y=x^2-2ax+2a+3 がaの恒等式であるためのxとyの条件を求めよ、という問題。
方法は1つだけではない。
任意のaについて成立するから、条件式にa=1とa=-1を代入してみる。
結果は、y=x^2-2x+5、y=x^2-2x+1 であるから、連立すると、x=1、y=4.
ところが、これは高々 a=1とa=-1に対して成立したに過ぎないから、全てのaについて成立する事を証明しなければならない。
x=1、y=4 を y=x^2-2ax+2a+3 に代入すると、4=1-2a+2a+3 となり全てのaについて成立するから、x=1、y=4 が求める答。
回答ありがとうございました。
aを求めるのではなく、x、yの条件を求める問題だったんですね。
ポイントをつけられなくてすみません>_<
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 関数f(x)=x^3+ax^2+bx+cとする。このとき、y=f(x)は以下の条件を満たしている。 1 2023/02/11 14:40
- 数学 高校数学で質問があります。 2 2023/02/13 16:40
- 数学 2次関数y=f(x)=−x^2+2ax+1(−1≦x≦1)の最大値を求めよ。 参考書は a<-1 - 5 2023/02/06 22:31
- 数学 確率について ①Xが実数値をとる確率変数で、f(x)=0(x<=-1),1/4x+1/4 (-1<= 2 2022/06/20 18:44
- 数学 接線の本数を求めたいときの与式の微分について FG例題206 f(x)=xe^-x とするとき、 実 4 2023/07/24 15:43
- 数学 高校数学で質問があります。 2 2023/02/13 15:49
- 数学 【高1 数学Ⅰ 二次関数】 二次関数 f(x)=x^2-4ax+8a がある。ただし、aは正の定数と 3 2022/07/23 15:46
- 数学 数学 2次関数y=f(x)=(x-a)^2 +2(0≦x≦2)の最大値を求めよ。 参考書は「a<1の 1 2023/02/06 17:18
- 数学 2次関数y=f(x)=−x^2+2ax+1(−1≦x≦1)の最大値を求めよ。 参考書は a<-1 - 3 2023/02/06 20:31
- 数学 【 数I 最大値・最小値 】 問題 2次関数f(x)=-x²-4x+1のa-1≦x≦a+1にお ける 1 2022/07/17 12:56
このQ&Aを見た人はこんなQ&Aも見ています
-
餃子を食べるとき、何をつけますか?
みんな大好き餃子。 ふと素朴な疑問ですが、餃子には何をつけて食べますか? 王道は醤油とお酢でしょうか。
-
「平成」を感じるもの
「昭和レトロ」に続いて「平成レトロ」なる言葉が流行しています。 皆さんはどのようなモノ・コトに「平成」を感じますか?
-
土曜の昼、学校帰りの昼メシの思い出
週休2日が当たり前の今では懐かしい思い出ですが、昔は土曜日も午前中まで学校や会社がある「半ドン」で、いつもよりちょっと早く家に帰って食べる昼ご飯が、なんだかちょっと特別に感じたものです。
-
牛、豚、鶏、どれか一つ食べられなくなるとしたら?
牛肉、豚肉、鶏肉のうち、どれか一種類をこの先一生食べられなくなるとしたらどれを我慢しますか?
-
タイムマシーンがあったら、過去と未来どちらに行く?
20XX年、ついにタイムマシーンが開発されました。 あなたは過去に行く? それとも未来? タイムマシーンにのって、どこに行って、何をしたいか教えてください!
-
定点
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
差分表現とは何でしょうか? 問...
-
f(x) g(x) とは?
-
マクローリン展開
-
"交わる"と"接する"の定義
-
次の等式を満たす関数f(x)を求...
-
ニュートン法について 初期値
-
微分について
-
不足和の求め方について
-
f(0)とf(0+)の違い。(+は上付き...
-
f(x)=x√(2x-x^2)が与えられて...
-
【大至急!!!】数学的帰納法...
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
関数 f(x) = e^(2x) につい...
-
数学の f(f(x))とはどういう意...
-
次の関数の増減を調べよ。 f(x)...
-
数学 定積分の問題です。 関数f...
-
ランダウの記号のスモール・オ...
-
二次関数 必ず通る点について
-
極限、不連続
-
掛け算も足し算も同じ値
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
f(x) g(x) とは?
-
数学の f(f(x))とはどういう意...
-
差分表現とは何でしょうか? 問...
-
"交わる"と"接する"の定義
-
次の関数の増減を調べよ。 f(x)...
-
三次関数が三重解を持つ条件とは?
-
ニュートン法について 初期値
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
次の等式を満たす関数f(x)を求...
-
微小量とはいったいなんでしょ...
-
二次関数 必ず通る点について
-
微分について
-
左上図、左下図、右上図、右下...
-
数学II 積分
-
どんな式でも偶関数か奇関数の...
-
数学 定積分の問題です。 関数f...
-
フーリエ変換できない式ってど...
-
数学についてです。 任意の3次...
-
大学の問題です。
-
Gnuplotについて エラーメッセ...
おすすめ情報