いけず言葉しりとり

波形でよく出てくるガウス形とローレンツ形ですが、これら半値幅とピークの高さがわかれば形が決まりますよね。
そこで、半値幅とピーク高さの値が求まったとして、面積を求めたいと思っています。半値幅とピーク高さでガウス形とローレンツ形の面積を表わすことができるのでしょうか?面積の公式ってあるのでしょうか?

数学に詳しい方、よろしくお願いいたします。

A 回答 (1件)

ガウス(Gauss)型曲線は


(1)  G(x) = A exp(-a^2 x^2)
です.中心は x=0 としています.
曲線と x 軸との間の面積 S はよく知られた公式で
(2)  S = ∫{-∞~∞} G(x) = (A/a)√π
です.
一方,ピーク値はもちろん A,
半値幅 w は,高さがピーク値の半分になる幅ですから,
x=±w/2 で G の値が A/2.
すなわち
(3)  exp(-a^2 w^2 / 4) = 1/2
で,これから
(4)  w = 2√(ln 2)/a  ⇔  a = w/2√(ln 2)
です.
(4)を(2)に代入して,ピーク値 A を考慮すればできあがり.

ローレンツ(Lorentz)型は
(5)  L(x) = B/(x^2 + Γ^2)
の形.前と同じく中心は x=0 としています.
ピーク値は x=0 とおいて B/Γ^2 ですね.
こちらも面積の積分は簡単で
(6)  S = ∫{-∞~∞} L(x) = Bπ/Γ
半値幅は
(7)  B/{(w/2)^2 + Γ^2} = (1/2) B/Γ^2
から
(8)  w = 2Γ  ⇔  Γ = w/2
(6)に(8)を代入して,ピーク値 B/Γ^2 を考慮すればできあがり.
    • good
    • 0
この回答へのお礼

物理関係でSiegmundさんの回答をたくさんお見かけしています。
とてもご丁寧に回答していただいてありがとうございました。公式どおりに計算すれば得られるものだったのですね(もっと難しいと思っていました)
本当にありがとうございました。

お礼日時:2002/04/03 17:14

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています


おすすめ情報