ママのスキンケアのお悩みにおすすめアイテム

たびたびすみません。
http://oshiete1.goo.ne.jp/qa3484149.html
を質問させていただいたものです。

まず、「標準平均Xバーの標準偏差」というのは「標本誤差」という
のですか?
そもそもこの標本誤差というのは何に役立つのでしょうか?

高校の数学の教科書の問題で、下記のようなものがありました。
「ある県の17歳男子の体重の平均値は62kg、標準偏差は9kgである。
 この県の17歳男子100人を無作為抽出で選ぶとき、100人の体重の
 平均Xバーの期待値と標準偏差を求めよ。」

この標準誤差?というのは9/√100で0.9kgとなると思うのですが、
この0.9kgはどんな意味をもつのでしょうか?

100人全体の標準偏差は、「標本標準偏差」というものになり本来は
分母をn-1にして、これが母標準偏差の推定値ということなんです
よね?それでこれはだいたい9kgに近いということですよね?
(分母をnにしたものを標本標準偏差と呼ぶの?)

文章下手ですみません。
よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

高校の教科書の問題が意図しているものが標準誤差なのかどうかは分かりませんが、標本平均値のばらつきの程度(つまり平均値の標準偏差)は標準誤差によって表されます。

標準誤差が分かると、推定の精度がわかります。詳しくは参考書を読むか、googleすれば分かるでしょう。

> この標準誤差?というのは9/√100で0.9kgとなると思うのですが、

95%の信頼区間は標本平均±標準誤差*1.96で表されます。つまり、今回の場合だと

[62 - 0.9 * 1.96, 62 + 0.9 * 1.96] = [60.236, 63.764]

となりますから、母平均が60~63の区間に含まれる確率が95%ですよというわけです。

> 100人全体の標準偏差は、・・・

標準偏差はデータのばらつきの程度を表したものです。今回の場合だと、標準偏差が9なのですから、

[62 - 9 * 1.96, 62 + 9 * 1.96] = [44.36, 79.64]

という公式に基づいた計算をすると、標本値(データ)は44kg~79kgの範囲内に95%程度のデータが存在しているというわけです。

> 分母をnにしたものを標本標準偏差と呼ぶの?

違います。分母がnであろうと、n-1であろうとそれはまぎれもなく標本標準偏差(単に標準偏差と呼ぶ)です。分母がnであるのは普通の標準偏差で、分母がn-1であるのは不偏推定量です。不偏推定量の標準偏差だとサンプルサイズが小さくても誤差が少ないというわけ。

この回答への補足

ご回答ありがとうございます。
計3回の質問でかなり理解させていただきました。

ところで、
>[62 - 0.9 * 1.96, 62 + 0.9 * 1.96] = [60.236, 63.764]
>となりますから、母平均が60~63の区間に含まれる確率が95%
とのことですが、今回の教科書の問題では問題文に「平均62kg」
とあります。これがわかっているのだから意味がないのではないか・・・
と思うわけです。

補足日時:2007/11/04 22:54
    • good
    • 0

> これがわかっているのだから意味がないのではないか・・・



そんなことはありません。この「平均62kg」という平均値は標本平均であって、母平均ではないのです。つまり、推定値であって真の値(母数)ではないということ。

> a <- rnorm(100, mean=62, sd=9) #平均62、標準偏差9の正規分布から100個サンプリング
> mean(a) #100個のデータの平均値
[1] 63.74326
> b <- rnorm(100, mean=62, sd=9)
> mean(b)
[1] 63.1398
> c <- rnorm(100, mean=62, sd=9)
> mean(c)
[1] 62.29182

上記のように、コンピュータによって、平均が62で標準偏差が9という正規分布に従うデータを100個発生させて、その都度に平均値を求めてみる。そうすると、微妙には標本平均値はばらついているのが分かりますでしょ?
    • good
    • 0

期待値や標準偏差をバラツキがあるデータ固有のものと思っていませんか?


バラツキがある母集団から標本を採って統計量を計算すればその値もバラツキを
持ちますからそれらも期待値と分散(⇒標準偏差)を持ちます。
例えば、サイコロを転がして出目の平均を求めたとします。
100回振って平均がぴったり3.5になると思いますか(合計がぴったり350)
確率としては結構低いです。(実行すれば合計で330から370ぐらいだと思います)
ある程度の標本を採って平均を求めても真の値からの誤差は常に含まれることを覚悟することが必要です。
理論値が分かっているときは『誤差だと思います』でいいですが、理論値が分かっていないときはどうしましょう。

A県の高校生女子の身長を100人のデータに基づいて出したとします。
平均158cmでした。これってどれぐらい正確なデータなのでしょう?
真の平均から誤差はないのでしょうか。(誤差が0.0cmというのはありえそうもないですね)
標準偏差が5cmと分かっていれば(分かってないときは標本から求めた標準偏差で代用するしか
ないのですが)5/√100=0.5 という計算結果から
158±2*0.5から真の平均は157から159cmであると確率95%で言えるのです。
逆にもっと精度を上げて幅1cmで結論つけたければ
5/√x=0.25   x=400
標本数が400必要と計算もできます。その結果が158cmなら157.5~158.5の範囲であると確率95%で結論がつけられます。
こういうことをするための標準誤差なのです。

>今回の教科書の問題では問題文に「平均62kg」
>とあります。これがわかっているのだから意味がないのではないか・・・

教科書だからそう書いていますが、実際にどういうときに統計が必要でしょう。
実際に平均や標準偏差が分かっているときはとる必要がありませんから、
分かっていない時の方がはるかに多いです。そして、それらを理解してもらうための
初期段階として分かっているときの求め方、式の操作を勉強して、やがて推定を勉強して
いくのだと思います。算数から数学への移行もまず、数字の計算をしっかり勉強してから
方程式などの勉強に入るでしょう。+-×÷ができなければ方程式、等式変形など
できるわけありませんから。それと同じだと思います。

とりあえず、この段階では平均62kg、標準偏差9kgと分かっていても標本を100とって
平均を求めたら60.2~63.8ぐらいのデータが得られそうだということは理解してください。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q母標準偏差・標本標準偏差と標本平均(Xバー)の標準偏差

(聞きたいのは、最後の3行がメインです)
http://oshiete1.goo.ne.jp/qa3478996.html
の質問をしたものです。

標準偏差を求めるとき、(ルートの中の)分母が「n」か「n-1」
の2種類があることはわかりました。
母標準偏差であっても標本標準偏差であっても「n」で求められる
が、標本から母標準偏差を推定するときが「n-1」を使うという
ことで理解しました。

ところで、「n」にしても「n-1」にしてもそんなに値としては
変わらないということなんですよね?

高校の時の教科書で、「標本平均(Xバー)の標準偏差」という
のがありました。
 「母平均m、母標準偏差sの母集団から大きさnの無作為標本
 抽出するとき、標本平均Xバーの標準偏差σ=s/(ルートn)」
というのがありました。
 「標本標準偏差」とこの「標本平均Xバーの標準偏差」というの
は全然違うものなんですよね?(値も全然違うものになってしま
うと思います。)

Aベストアンサー

 統計学での目的は、集団全体のこと、すなわち母集団について知ることです。

 標準偏差は、集団のばらつきの程度を示し、本当に知りたいのは母集団の標準偏差、すなわち、母標準偏差です。しかし、母標準偏差が現実には求められない場合があります。一つは標本数が多すぎる場合、もう一つは蛍光灯の寿命のように全てを調べると商品が残らなくなつてしまう場合です。
 そこで、仕方なくその一部を取り出す(=抽出して)、母集団のバラツキを推定します。母集団を推定するためには、いくつかを標本として選び、その標準偏差、すなわち標本標準偏差(不偏標準偏差ともいう)を代わりに用いることになります。標本は、ランダムサンプリングをするので、選ぶたびに異なり、そのバラツキは母集団とは同一の標本にはなりません
 そこで、母標準偏差はnで割るので、標本標準偏差はn-1で割っておけばやや広い範囲になるので、標本の選択が少々不味くても、広めに取ってあるのでカバーできることになります(数学的には証明できるようですが、私には無理なので、直感的に表現しました)。もちろん、標本数が大きければ、nであろうが、n-1であろうが大差はありません。このようにして、計算が非現実的な母集団のバラツキを推定するわけです。標本標準偏差は、母標準偏差の代理なのです。

>標本平均Xバーの標準偏差
 標準偏差は、母集団のバラツキを示します。標本標準偏差は、母集団のバラツキの推定値です。
 これは、標準誤差で、母集団から抽出した「標本の平均値のバラツキ」を示しています。平均ですから、再度nで割り算することになります。外国人の論文には、バラツキがグラフ上などでは小さく見えるので、標本標準偏差(母集団のバラツキの推定値)ではなく、この標準誤差(標本の平均値のバラツキ)で示したものを見かけます。

 なお、標準偏差は、英語ではStandard Deviation、エクセルではSTDEVPでPの根拠が不明。標準誤差は、英語ではPartial Standard Deviation、エクセルはSTDEVで、Patialの単語の部分が見当たりません。エクセルの関数を使うときは、逆にやりそうで、いつも混乱しています。

 統計学での目的は、集団全体のこと、すなわち母集団について知ることです。

 標準偏差は、集団のばらつきの程度を示し、本当に知りたいのは母集団の標準偏差、すなわち、母標準偏差です。しかし、母標準偏差が現実には求められない場合があります。一つは標本数が多すぎる場合、もう一つは蛍光灯の寿命のように全てを調べると商品が残らなくなつてしまう場合です。
 そこで、仕方なくその一部を取り出す(=抽出して)、母集団のバラツキを推定します。母集団を推定するためには、いくつかを標本として選び、...続きを読む

Q標準偏差の計算方法:「n」と「n-1」(n:データの総数)

標準偏差を求めるとき、データの総数「n」で割る場合と、「n-1」で割る場合があるそうですが、この違いは何でしょうか?
あまり難しいことは分からないので分かりやすいように解説していただけるとうれしいです。
補足を載せることになるかもしれないのでそれもよろしくお願いします。
回答よろしくお願いします。

Aベストアンサー

http://oshiete1.goo.ne.jp/qa3484149.html
http://oshiete1.goo.ne.jp/qa2928895.html
http://oshiete1.goo.ne.jp/qa3488249.html

Q平均値(エックス バー)の表示方法

ワード2000で、平均値の記号(Xの上に ̄)を表示したいのですが、どうやったらできるのか教えてください。
「へいきん」とかでは出ないし、一応本でも探したのですが見当たらなくて…(単に見落としただけかもしれません)
お願いします!

Aベストアンサー

 数式エディタのほかに、「ルビ」として書くことも出来ます。

 文字Xをマークした後「書式」→「拡張書式」→「ルビ」で「対象文字」の横の「ルビ」に「-」を入れ、「プレビュー」で確認し、よければ「OK」

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

Q標準偏差について

エクセルで、標準偏差の式は4種類あり
(STDEV、STDEVA 、STDEVP、STDEVPA)
違いがよくわかりません。
はじめの2つは分母が(n-1)、あとの2つは分母がn
となっています。

高校の数学で習ったときは、分母はnだったと思います。
この違いはなんですか?

(2つずつ同じ数式ですが、Aがあるのと無いのでは何が
 違うかわかりますか?)

エクセルのヘルプでは、下記のように書いてあります。

STDEV 引数を正規母集団の標本と見なし、標本に基づいて母集団の標準偏差の推定値を返します。

STDEVA 数値、文字列、および論理値を含む引数を正規母集団の標本と見なし、母集団の標準偏差の推定値を返します。

STDEVP 引数を母集団全体と見なし、母集団の標準偏差を返します。

STDEVPA 数値、文字列、および論理値を含む引数を母集団全体と見なし、母集団の標準偏差を返します。

Aベストアンサー

標準偏差そのものを求める計算は、質問者さんが言われるとおり、分母をnとするのが正しいです(実際は、分散を計算するときにnで割るのであって、標準偏差は(√分散)ですね)。

ですから、例えば、

部品を10万個作った。これら部品の寸法の平均および標準偏差を調べたい。

と言う場合は、暇な人がいれば、とにかく10万個の部品の寸法を全部測定して、全部の測定値から平均と分散、標準偏差を計算する。このとき、平均も分散も10万で割る。こうして求められた値は、とりもなおさず母集団の平均と分散であり、標準偏差はSTDEVPで計算するべき。

ところが、大抵の場合、10万個の部品全部の寸法を調べようなんて暇な人はいないわけで、10万個作ったうちの100個を無作為に抜き出して測定して、その100個の測定値の平均値や標準偏差を求めようとする。このように、母集団(10万個)から100個抜き出した標本の平均を計算するときには100で割り、標本の分散そのものを計算するときも100で割る。こうして求めた標本の平均や分散は、母集団のそれと区別して、標本平均とか標本分散と呼ばれるのですが、標本の標準偏差そのものを求めるときもSTDEVPを使って計算して良い(と思う)。
ところが、100個抜き出して検査を行った元々の目的は、母集団の平均や標準偏差を「推定しましょう」ということであって、標本平均や標本分散を求めれば良いというほど実は単純ではない。抜き取り検査をして、標本平均と標本分散を求め、標本を母集団にもどしてまた抜き取り検査をする。これを何度も何度も繰り返す。このとき、繰り返し求められた標本平均の平均がどうなるか、標本分散の平均がどうなるかを調べてみると、標本平均の平均は、どうやら母集団の平均値(強いていうなら真値ですね)に近づくのだけど、ちょっと不思議なことに、標本分散の平均は母集団の分散に近づいてくれない。ということで、標本分散をもってして母集団の分散の推定量とするのはどうも怪しい。

推定量の平均が母集団の母数(平均とか分散)になるとき、その推定量を不偏推定量といいますが、上で述べたように標本平均は不偏推定量なんだけれど、標本分散は不偏推定量ではない。そこで編み出されたのが、標本から分散の推定量を計算するときにnで割るのではなく(n-1)で割る方法で、こいつが分散の不偏推定量になっているため不偏分散と呼んばれたりする。で、(√不偏分散)を計算してくれるのがSTDEV。

ということで、
STDEVPは母集団または標本(を母集団と見なして)の標準偏差を計算してくれる。
一方、STDEVは標本の(√不偏分散)を計算してくれるが、これは「標本の標準偏差」ではなく、「母集団の標準偏差の推定値」である。

じゃあ、母集団の標準偏差の推定値はSTDEVで計算しないと誤りなのか、と言われると、それがまたややこしい。不偏推定量というのは、その期待値が母集団と一致するという点では一応確からしいわけなんだけど、そのほかにも推定量としての確からしさを見積もる方法はいろいろとあって、(n-1)で割る不偏分散が必ずしも一番確からしいとは言えないと思う。最尤推定量っていうのもあるのだけど、不偏分散は最尤推定量ではなく、標本分散の方が最尤推定量だったりもする。

まあ、現実問題としてはnが適当に大きければ標本分散と不偏分散の違いは問題にならない場合が多いのであまり気にした事はありませんし、それが気になるような場合は、他に問題がある場合の方が多いので、どっちでもいーよなーと大雑把な私はいつも思ってる。

標準偏差そのものを求める計算は、質問者さんが言われるとおり、分母をnとするのが正しいです(実際は、分散を計算するときにnで割るのであって、標準偏差は(√分散)ですね)。

ですから、例えば、

部品を10万個作った。これら部品の寸法の平均および標準偏差を調べたい。

と言う場合は、暇な人がいれば、とにかく10万個の部品の寸法を全部測定して、全部の測定値から平均と分散、標準偏差を計算する。このとき、平均も分散も10万で割る。こうして求められた値は、とりもなおさず母集団の平均と...続きを読む

Q”エックスバー”という記号の入力(IME2000)

MS-IME2000を使用しています。よく平均値を表す記号でアルファベットの”エックス”の上に横線がついた”エックスバー(?)”を見かけますが、記号で検索しても見つからずワープロ入力する段階で困っています。
どなたか教えていただければ幸いです。

Aベストアンサー

Wordなら、
「挿入」-「オブジェクト」のMicrosoft数式3.0を使えばきれいに作れます。

または、
xにルビを振る方法でもごまかせます。
ルビにアンダーバー(shift+「ろ」)を使うともっともらしく見えます。

Q不偏分散の (n-1)で割る理由、、、

分散の計算では、nで割る母分散と、(n-1)で割る不偏分散がありますが
なぜ(n-1)で割るのか、いまいち直感に訴える説明に出会っていません。
たいていの本では、天下り式に「(n-1)で割る」とだけしか書いて
いません。たまに親切な本では計算式に平均値が入っているので自由度は
nから1だけ少なくなる云々とありますが、自由度が何故1減らなければ
ならないのか、いまいち理解出来ません。
もう少し高度な本になると、期待値Eやら分散Vやらが出て来て、
不偏統計量云々の「ややこしい」説明が出て来ますが、これも直感に
訴えかける説明ではありません。
数物系出身ながらお恥ずかしい質問ですが、いざ自分に問いかけてみると
納得できる説明が出来ません。「なるほど!」というご説明をいただけると
幸いです。よろしくお願いします。

Aベストアンサー

>自由度とは何を意味するのでしょうか?
数学的正確さがない表現です。

測定点がn個あったとします。これをベクトルで考えると.これから求めようとする値である1点の点はn個の方向へ引っ張られているのです。この数が自由度です。
もし.このn個の中の数の1つを使ってしまったらばどうなるのでしょうか。一つ引っ張る方向が減ります。
世の中にnこしか測定点が存在しない場合には.全体が決まっていますから平均値を求めても自由度は変化しません。しかし.無数の測定が出来る時に平均を求めたらばどうなるのでしょうか。本来無数の点すべてを測定した時に求められる1点の値が分からないから.n個の測定値の算術平均を取って多分全体の点の1点になるであろうと推定して平均としました。つまり.絶対的な値ではなくて想像上の点です。今まであった点に変えてこの点を使いますから.引っ張る方向が一つ減ります。
自由度で割るというのは.このように引っ張る点1点あたりの割合を示しています。

このように.一つの値を求めようとした時に.自由度は測定点の数から推定点の数を引いた残りを示しています。

>自由度とは何を意味するのでしょうか?
数学的正確さがない表現です。

測定点がn個あったとします。これをベクトルで考えると.これから求めようとする値である1点の点はn個の方向へ引っ張られているのです。この数が自由度です。
もし.このn個の中の数の1つを使ってしまったらばどうなるのでしょうか。一つ引っ張る方向が減ります。
世の中にnこしか測定点が存在しない場合には.全体が決まっていますから平均値を求めても自由度は変化しません。しかし.無数の測定が出来る時に平均を求めたらばど...続きを読む

Q統計的工程管理

仕事で工程管理の勉強を始めました。
基礎的な用語なんですけど分かりません、教えてください。
(1)工程能力指数のCpとCpkとの違いが分かりません。どちらも同じ意味なのでしょうか?
(2)PpとPpkは何を意味するのでしょうか?

教えて下さい、宜しくお願します。

Aベストアンサー

(1) Cpは工程能力指数(Process Capability Index)のことで、工程でのデータ分布と規格との数的関係を表したものです。通常、
Cp=(上限規格値-下限規格値)/6s
    s=工程データの標準偏差
で計算されます。
ただし、このCpはデータの分布の中心(=平均値)が上限規格値と下限規格値の中央にあることが前提となっていて、ズレは考慮されていません。
そこで、平均値が上下規格の中心からずれている(=かたより)場合に用いる指標として、Cpkが作られました。

Cpk=(1-K)Cp

  |平均値-(規格上限値+規格下限値)/2|
K=--------------------------------------
   (規格上限値+規格下限値)/2

  |・・|は絶対値

です。したがって、偏りがない場合(平均値が上下規格値の中央と一致)はK=0で、Cp=Cpkですが、ズレが大きいほど、工程能力指数は下がります。

(2) Ppは工程性能指数(Process Performance Index)といわれ、アメリカのGMなどが提唱するQS9000という規格で使われているものです。
QS9000では、上記のCpの式で計算したものをPpと呼びます。ではCpはどうなるのかというと、上記式のsの部分が Rbar/d2 となります。これはX-R管理図から求めるもので、統計上、郡内変動を表します。これに対して、Ppはデータの標準偏差を使うところに違いがあります。
PpkはCpkと同様で、
Ppk=(1-K)Pp
Kの計算は上記と同じです。

QS9000では工程管理の一貫として管理図を使うことが書かれているため、管理図から工程能力指数を出そうとしたようです。そのため、工程管理でわかる工程能力とサンプリングデータによる工程能力を分ける意味で、PpとCpを作ったようです。

ちなみに、どの指数も、1以下では工程能力がないと判断され、QS9000では2以上が目標とされます。

(1) Cpは工程能力指数(Process Capability Index)のことで、工程でのデータ分布と規格との数的関係を表したものです。通常、
Cp=(上限規格値-下限規格値)/6s
    s=工程データの標準偏差
で計算されます。
ただし、このCpはデータの分布の中心(=平均値)が上限規格値と下限規格値の中央にあることが前提となっていて、ズレは考慮されていません。
そこで、平均値が上下規格の中心からずれている(=かたより)場合に用いる指標として、Cpkが作られました。

Cpk=(1-K)Cp

  |平...続きを読む

Q加重平均と平均の違い

加重平均と平均の違いってなんですか?
値が同じになることが多いような気がするんですけど・・・
わかりやす~い例で教えてください。

Aベストアンサー

例えば,テストをやって,A組の平均点80点,B組70点,C組60点だったとします.
全体の平均は70点!・・・これが単純な平均ですね.
クラスごとの人数が全く同じなら問題ないし,
わずかに違う程度なら誤差も少ないです.

ところが,A組100人,B組50人,C組10人だったら?
これで「平均70点」と言われたら,A組の生徒は文句を言いますよね.
そこで,クラスごとに重みをつけ,
(80×100+70×50+60×10)÷(100+50+10)=75.6
とやって求めるのが「加重平均」です.

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む


人気Q&Aランキング