「みんな教えて! 選手権!!」開催のお知らせ

(聞きたいのは、最後の3行がメインです)
http://oshiete1.goo.ne.jp/qa3478996.html
の質問をしたものです。

標準偏差を求めるとき、(ルートの中の)分母が「n」か「n-1」
の2種類があることはわかりました。
母標準偏差であっても標本標準偏差であっても「n」で求められる
が、標本から母標準偏差を推定するときが「n-1」を使うという
ことで理解しました。

ところで、「n」にしても「n-1」にしてもそんなに値としては
変わらないということなんですよね?

高校の時の教科書で、「標本平均(Xバー)の標準偏差」という
のがありました。
 「母平均m、母標準偏差sの母集団から大きさnの無作為標本
 抽出するとき、標本平均Xバーの標準偏差σ=s/(ルートn)」
というのがありました。
 「標本標準偏差」とこの「標本平均Xバーの標準偏差」というの
は全然違うものなんですよね?(値も全然違うものになってしま
うと思います。)

A 回答 (3件)

 統計学での目的は、集団全体のこと、すなわち母集団について知ることです。



 標準偏差は、集団のばらつきの程度を示し、本当に知りたいのは母集団の標準偏差、すなわち、母標準偏差です。しかし、母標準偏差が現実には求められない場合があります。一つは標本数が多すぎる場合、もう一つは蛍光灯の寿命のように全てを調べると商品が残らなくなつてしまう場合です。
 そこで、仕方なくその一部を取り出す(=抽出して)、母集団のバラツキを推定します。母集団を推定するためには、いくつかを標本として選び、その標準偏差、すなわち標本標準偏差(不偏標準偏差ともいう)を代わりに用いることになります。標本は、ランダムサンプリングをするので、選ぶたびに異なり、そのバラツキは母集団とは同一の標本にはなりません
 そこで、母標準偏差はnで割るので、標本標準偏差はn-1で割っておけばやや広い範囲になるので、標本の選択が少々不味くても、広めに取ってあるのでカバーできることになります(数学的には証明できるようですが、私には無理なので、直感的に表現しました)。もちろん、標本数が大きければ、nであろうが、n-1であろうが大差はありません。このようにして、計算が非現実的な母集団のバラツキを推定するわけです。標本標準偏差は、母標準偏差の代理なのです。

>標本平均Xバーの標準偏差
 標準偏差は、母集団のバラツキを示します。標本標準偏差は、母集団のバラツキの推定値です。
 これは、標準誤差で、母集団から抽出した「標本の平均値のバラツキ」を示しています。平均ですから、再度nで割り算することになります。外国人の論文には、バラツキがグラフ上などでは小さく見えるので、標本標準偏差(母集団のバラツキの推定値)ではなく、この標準誤差(標本の平均値のバラツキ)で示したものを見かけます。

 なお、標準偏差は、英語ではStandard Deviation、エクセルではSTDEVPでPの根拠が不明。標準誤差は、英語ではPartial Standard Deviation、エクセルはSTDEVで、Patialの単語の部分が見当たりません。エクセルの関数を使うときは、逆にやりそうで、いつも混乱しています。
    • good
    • 6

> ところで、「n」にしても「n-1」にしてもそんなに値としては変わらないということなんですよね?



サンプルサイズが大きい場合はほとんど変わりません。サンプルサイズが小さいときはかなり異なってきます。これは自分でシミュレーションしてみれば簡単に分かります。

> 標本平均Xバーの標準偏差σ=s/(ルートn)」というのがありました。

これは標本誤差で標本標準偏差とは異なります。
    • good
    • 4

> 「標本標準偏差」とこの「標本平均Xバーの標準偏差」というの


は全然違うものなんですよね?(値も全然違うものになってしま
うと思います。)

全く違うものです。値としては、だいたい√n倍違うはずです。

この回答への補足

値が違うのは√n倍違うのでわかりますが、
どのようなものなのか回答してくれるとありがたいです。

補足日時:2007/11/02 22:56
    • good
    • 1

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています


おすすめ情報