
No.5ベストアンサー
- 回答日時:
No2です。
図を考えて簡単かと思いましたがあとから御指摘が御座いましたようにこれは小学校レベルではないですね。60°と30°の角度の三角定規の辺の長さの比が1:2:√3だと知っていたら簡単だとおもいましたが、その後が考え方からして面倒でした。そもそも三角定規から入ると絵が2通り描けるのですね。(どうおいても結果は同じになりますが...)
(i)30°が台形の底角ですから、斜辺(長さを仮に2aとします)を台形の斜辺、(√3)aの辺を台形の底辺の一部なるように両サイドにおきます。題意により、上辺の長さも2aになりますから三角形の間にはいる長方形は幅2a、高さaです。
このaを求める計算も、そのあとの面積の計算も小学生には難しすぎでしょうね。
(√3)a+(√3)a+2a=4
即ち
a(√3+1)=2
から
a=2/(√3+1)=2(√3-1)/(3-1)=√3-1
となります。これを使って以下のようになります。
上底;2(√3-1)
下底;4
高さ;√3-1
台形公式より面積をもとめると(2(√3-1)+4)*(√3-1)/2=(√3+1)*(√3-1)=2(cm^2)となります。(No4さんと同じです。)
(ii)三角定規の斜辺(長さ2aとする。)を台形の底辺になるように置くと、(√3)aの辺が台形の斜辺になります。この時台形の上辺が(√3)aになる必要がありますので、三角形の直角間の距離が(√3)aです。三角形の直角から台形の底辺(三角形の斜辺)に下ろした垂線の足は30°の角から3a/2、60°の角からはa/2の位置です。よって60°の部分をくっつけておいてしまうと上辺はaにしかなりません。(√3)aの長さにするためには60°角を(√3-1)a離して置く必要があります。よってこの時のaを求める式は
4=2a+2a+(√3-1)a=(√3+3)a...(4)
これより
a=4/(√3+3)=2(3-√3)/3...(5)
これより台形の上底の長さは
(√3)a=2(3√3-3)/3=(6√3-6)/3=2(√3-1)...(6)
となり、また高さは
(√3)a/2=√3(3-√3)/3=(3√3-3)/3=√3-1...(7)
となります。この結果は上底、下底、高さとも(i)と同じですから面積は2となります。
(iii)そもそも三角定規のおき方などというものを考えないのでしたら、相等しい三辺の長さをaとし、底辺についてa+2acos30°=4としてaを計算すれば面積は簡単に出ますが、それだとますます小学生の問題ではないでしょうね。
安直に答えてすみませんでした。
わざわざ私の質問に答えていただき、ありがとうございました。とてもわかりやすい説明で助かりました。√が出てきて、これはもう小学生には教えるのは無理ですよね。私自身も√の計算があやふやで、行き詰っておりました。
No.6
- 回答日時:
まず、説明を進めやすくするために記号を振ります
台形の左上の頂点から反時計回りにABCDとします
次に上辺の左右の頂点A、Dから下辺に垂線を引き、それぞれの交点をE、Fとします
ここまでで図形が左右2つの三角形と真ん中の長方形に分割されます
少し複雑なのでまず道筋を示します
下辺BCの中点Mを取ります
Mから垂直に上辺方向に半直線を引き、上辺との交点をG、半直線上にBM=CM=HMとなる点Hを取ります
HとCを結んでできる三角形HMCの面積が台形ABCDの面積と等しくなることを利用して2×2÷2=2と小学生の範囲内の知識でどうにか求めることができます
何故そうなるのかですが、
三角形HMCの中に含まれる台形GMCDは元の台形の右半分と同じものですから、残りの部分の面積が台形の左半分と一致すれば良いことになります
HDを結んでできる三角形HGDと三角形ABEは同じ三角形ですので、後は三角形HDCと四角形AEMGが等しいことが分かればよいことになります
これを示すために対角線BDと補助線DEを引きます
台形の上辺と下辺は平行ですので、三角形ABDと三角形AEDの面積は等しくなります(平行線を利用した面積の移動は中学受験の範囲内です)
三角形AEDは長方形AEFDの半分の面積ですから、同じく長方形AEFDの半分の面積である四角形AEMGとも等しくなります
また、三角形ABDは件の三角形HDCと合同な三角形です(題意や補助線の作図時の条件からAB=AD=DC=DH、角BAD=角CDH、残りの角度も同じであることが分かります。条件を満たせば合同というのも中学受験では使用してよい知識です)
これで三角形HDCと四角形AEMGの面積が等しいことが分かるわけです
このように考えればどうにか中学受験までの知識で解くことが可能ですが、この問題かなりの難易度ですね……とんでもない高レベルの私立校でないとお目にかからないような……?
わざわざ私の質問にとても丁寧に答えていただき、ありがとうございました。私の知識ではどうにも答えが出せず、時々思い出してはいましたが、お手上げ状態でした。でも中学受験の知識でも解けることに感動しました。先生がどこからこの問題を探してきたのかは、敢えて聞いてはいませんが、おっしゃるとおり、かなりの難易度ですよね。この度は本当にありがとうございました。
No.4
- 回答日時:
小生も朝からこの問題にチャレンジしました。
三平方の定理を使わないと(正三角形の高さを求める)この問題は解けないと思います。
で中学入試問題というと多分別の解があるのでしょう。小生にはわかりません。2平方センチというのが答えと思うのですが(高さがルート3ー1、城辺の長さがその倍となると思うのですが)。どうも頭が堅いのでしょうか。
わざわざ私の質問に回答いただき、ありがとうございました。三平方の定理を使わないとわからないとは思ったものの、子どもにどのように説明していいか、わからず困り果てておりました。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 『弧は弦より長し』 8 2022/04/18 10:23
- 数学 数学の得意な方教えて下さい。 図で四角形ABCDは平行四辺形で、△ABEと面積が等しい三角形をすべて 2 2022/05/07 16:25
- 数学 球の中心が正三角形の3辺をたどって1周したとき、球が通過してできた立体の体積を求めなさい。 1 2022/06/23 20:35
- 数学 四角すいの表面積…難問?助けてください。 8 2022/10/04 20:11
- 数学 三角形の面積を求めよ 斜辺が11cm、底辺が14cmの二等辺三角形で 昨日解答をしてもらいましたが、 3 2023/03/11 22:03
- 数学 小5 面積問題 6 2023/01/16 18:14
- 数学 中3 円周角の定理の問題です 3 2022/06/29 22:21
- 数学 高校数学1について質問です。 次の問題の時の解き方と答えを教えてください。 『1辺が10cmの正方形 7 2022/09/12 19:03
- 数学 画像の中学2年生の数学の問題について教えていただきたいです。 三角形ADCが二等辺三角形であることと 2 2023/01/29 16:14
- 数学 三角比の相互関係「sinA^2+cosA^2=1」が直角でなくても成り立つ理由について。 これは、三 8 2022/03/31 09:22
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
2直角や3直角とは何ですか?
-
日高屋 底辺ですか? それとも...
-
36歳以上の独身低所得は底辺...
-
日曜大工がしたいのですが三角...
-
二等辺三角形の底辺の求め方
-
底辺6cmの直角三角形があります...
-
台形の角度
-
長方形に対角線をひいた時にで...
-
四角錐を途中で円形に切ったら?
-
1立方センチメートルは?
-
1リットルは、一辺が何cmの立方...
-
5年生 体積の問題
-
部活保護者会の役員決めについて
-
小学校1年生の学年行事
-
長方形の辺長と面積から求める直径
-
折れ曲がった厚みを考えない円...
-
配管内の内容積の求め方について
-
PTA広報委員長やっていますがも...
-
友達のランドセルを破損しました
-
1立方メートル=1キロリットル
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
36歳以上の独身低所得は底辺...
-
日高屋 底辺ですか? それとも...
-
底辺6cmの直角三角形があります...
-
2直角や3直角とは何ですか?
-
三角スケールの計り方がわかり...
-
四角錐を途中で円形に切ったら?
-
直角三角形に内接する四角形の面積
-
四角錐台の折り曲げ角度の求め方
-
1+2+3+4+5+6+7+8+9+10=55
-
不等辺三角形の頂角と高さと底...
-
長方形に対角線をひいた時にで...
-
なぜ長方形はたて×よこなの?
-
二等辺三角形の面積が最大化さ...
-
生活保護って底辺なんですか? ...
-
会社で底辺中の底辺と言われた...
-
この問題の答えを教えていただ...
-
直角三角形の角度と辺の長さを...
-
三角形の底辺の定義は?
-
積分面積公式で1/6公式と1/3公...
-
この図形の実線部分の面積の出...
おすすめ情報