位置情報で子どもの居場所をお知らせ

Wikipediaの巡回群の項目に

p、q が互いに素ならば、位数 p の巡回群と、位数 q の巡回群の直積は巡回群である。

ということが書いてあったのですが、これって簡単に証明できるのですか?
証明の概略と、これが十分条件も満たしてるならそちらの方の証明の概略も教えていただけないでしょうか。


そもそも巡回群の直積が巡回群になるとは、たとえば{e,a,a^2}と{e,b,b^2,b^3}の直積を考えたときに、<a,b>^nは単純に<a^n,b^n>というように考えて、

<a,b>^0=<e,e>
<a,b>^1=<a,b>
<a,b>^2=<a^2,b^2>
<a,b>^3=<e,b^3>
<a,b>^4=<a,e>
<a,b>^5=<a^2,b>
<a,b>^6=<e,b^2>
<a,b>^7=<a,b^3>
<a,b>^8=<a^2,e>
<a,b>^9=<e,b>
<a,b>^10=<a,b^2>
<a,b>^11=<a^2,b^3>

はい、巡回群。という感じになるのでしょうか?

このQ&Aに関連する最新のQ&A

A 回答 (3件)

p、q が互いに素ならば、確かに直積は巡回群になります。

これは十分条件です。この証明は基本的には連立合同式の解の存在証明と同じです。
x≡s(mod p)
x≡t(mod q)
この連立合同式の解の存在はどのように示せますか?

この回答への補足

一個見つかりさえすれば、pqだけ足したり引いたりすればいいのだから、とりあえず
∃(m,n) pn+s=qm+t
という感じでしょうか?的外れですか?

補足日時:2009/08/12 07:41
    • good
    • 0

>つまりpとq適当に選んできて並べてって感じでいいわけですね。



違います。

この回答への補足

0,1,2,3,4,・・・,p,0 ,・・・
0,1,2,3,4,・・・,p,p+1,・・・,q


こんな感じで並べたときに、最小公倍数pqまで同じ組み合わせがないってことを言えば良いんじゃないんですか??
そういうことだと思いますし、違うとはおもわないですが。

補足日時:2009/08/12 07:28
    • good
    • 0

>これって簡単に証明できるのですか?


簡単です。

>証明の概略と、
あなたか書いたそのままです。

>これが十分条件も満たしてるなら
この命題がまさに「p,q が互いに素」であることが巡回群であるための
十分条件であることを言っています。

この回答への補足

なるほどわかりました。つまりpとq適当に選んできて並べてって感じでいいわけですね。
逆はこの説明ではダメですよね?巡回群ならばp,qは互いに素というのは言えないということでしょうか?

補足日時:2009/08/12 00:16
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q位数素数と部分群の数について

pを素数とし,Gを位数pの群とする.
このときG×Gの部分群の数を求めよ.

といった問題について教えてください.

Gは位数pの群なので,GはZ/pZと同型になり,G×GはZ/pZ×Z/pZと同型になるので,Z/pZ×Z/pZの部分群の数を求めればいいと思うのですがそれが求められません.

よろしくお願いします.

Aベストアンサー

面倒臭いのでGをZ/pZの加法群と同一視します。

G×Gの位数はp^2なのでLagrangeの定理から
G×Gの部分群の位数は1かpかp^2ですが:

A 位数1の部分群は{(0,0)}の1つだけ
B 位数p^2の部分群はG×G自身です。

C で位数pの部分群ですが...

位数が素数であるからそのような部分群Uは
巡回群で、ある生成元(a,b)∈U⊂G×Gがあります。
一方、任意の(x,y)∈G×Gに対して
(x,y)≠(0,0)なら(x,y)の位数はpで(**)、<(x,y)>は
位数pの巡回群になります。
よって位数がpであるG×Gの部分群全体は
(0,0)以外のG×Gの元(x,y)によって生成される
位数pの巡回群全体Tと一致します。

(**)この辺が位数が異なる素数である巡回群の直積と
  事情が異なります。p,qが相異なる素数の場合、
  (Z/pZ)×(Z/qZ)には位数pq, p, q (,1)の元が有ります

*特に(0,0)以外の元(x,y)は(p^2-1)個ありますが、
 これらは全てある位数pのG×Gの部分群に含まれます。
*一方V,W∈Tに対してV,Wに(0,0)以外の共通元
 (x,y)が有るとすると、<(x,y)>も位数pの
 巡回群であって、V=W.
 対偶をとって、V,Wが共に位数pのG×Gの部分群で、
 V≠WならばV,Wに共通元はありません。
 位数pのG×Gの部分群Vに含まれる、(0,0)以外の
 元の数は(p-1)個です。

よって、(0,0)以外の元(p^2-1)個は、
(p^2-1)/(p-1) = (p+1)個の 位数pの部分群たちに分類
されます。よって、位数がpであるG×Gの部分群は
p+1個です。

面倒臭いのでGをZ/pZの加法群と同一視します。

G×Gの位数はp^2なのでLagrangeの定理から
G×Gの部分群の位数は1かpかp^2ですが:

A 位数1の部分群は{(0,0)}の1つだけ
B 位数p^2の部分群はG×G自身です。

C で位数pの部分群ですが...

位数が素数であるからそのような部分群Uは
巡回群で、ある生成元(a,b)∈U⊂G×Gがあります。
一方、任意の(x,y)∈G×Gに対して
(x,y)≠(0,0)なら(x,y)の位数はpで(**)、<(x,y)>は
位数pの巡回群になります。
よって位数がpであるG×Gの部分群全体は
(0,0)以外のG×Gの元(x,y)によって生成...続きを読む

Q有限アーベル群Gの位数が相異なる2素数p、qの積であるとき、Gは巡回群

有限アーベル群Gの位数が相異なる2素数p、qの積であるとき、Gは巡回群であることを示せ。


という問題があるのですがよくわかりません。できれば詳しく教えていただけると嬉しいです!

Aベストアンサー

大抵の教科書に書いてありませんか?
構造定理を使わずに、手作りっぽく
書いてみると…

G の元で、単位元でないモノの一つを a とし、
a が生成する G の部分群を A とする。
A の位数は、ラグランジェの定理より、
G の位数の約数 1,p,q,pq のどれかになる。
(0) 位数が 1 の場合。
a が単位元でないから、これはありえない。
(1) 位数が p の場合。
可換群の部分群は全て正規部分群だから、
G は A と商群 G/A の直積に分解する。
A,G/A は位数 p,q の部分群であり、
素数位数だから巡回群である。
巡回群同士の直積群は、巡回群となる。
(2) 位数が q の場合。
同上。
(3) 位数が pq の場合。
単項生成の部分群は巡回群だから、
G = A は位数 pq の巡回群になる。

QPが群Gのシローp-部分群であるとき Pが唯一のシローp-部分群である

Pが群Gのシローp-部分群であるとき Pが唯一のシローp-部分群であることと

PがGの正規部分群であることが同値であることを

シローの定理を使って示すにはどうすればいいのでしょうか?


<シローの定理>
(1)p^r | |G| ==> Gは位数p^rの部分群をもつ
よってシローp-部分群は存在する

(2)H: Gのp-部分群とすれば
Hを含むシローp-部分群が存在する

(3)シローp-部分群は互いにG-共役

(4)シローp-部分群の個数は
1+k*p の形 (k∈Z,k≧0)

Aベストアンサー

p-シロー群が正規部分群とは次の二つのことが成り立つ。

(1) Pは正規部分群 ⇔ xP = Px,∀x.
(2) P,Qがp-シロー群 ⇒ aP = Qa,∃a.

Q
= aPa^{-1} (2)より
= P (1)より

よってP=Q、つまり、ただ一つしかない。

p-シロー群がP一つしかないとき
⇒すべてのxに対してp-シロー群xPx^{-1}とPは共役。
⇒axPx^{-1} = Pa,∀x
⇒yPy^{-1} = P,∀y
(y = axと変形)
⇒Pは正規部分群

どうかな、てきとーなんで、ゆるしてね

Q位数45の群が位数9の正規部分群をもつことの証明はどうすればいいのでし

位数45の群が位数9の正規部分群をもつことの証明はどうすればいいのでしょうか?

シローの定理が必要だとおもうのですが。。。

<シローの定理>
(1)p^r | |G| ==> Gは位数p^rの部分群をもつ
よってシローp-部分群は存在する

(2)H: Gのp-部分群とすれば
Hを含むシローp-部分群が存在する

(3)シローp-部分群は互いにG共役

(4)シローp-部分群の個数は
1+k*p の形 (k∈Z,k≧0)

Aベストアンサー

位数45の群をG、Gの位数9の部分群をPとする。

><シローの定理>
>(4)シローp-部分群の個数は1+k*p の形 (k∈Z,k≧0)
がポイント

しかもシローp-部分群の個数は|G:P|だから、|G|=45
の約数である。

45の約数1,3,5,9,15,45のうち3で割ると1余るのは1のみである

したがってGのシロー9-部分群の個数は1個である。

Gから元kを任意にとる。
群kPk^(-1)を考えるとkPk^(-1)の位数は9である。
ところが、のシロー9-部分群は1個だからkPk^(-1)=P
でなければならない。

したがってPはGの正規部分群である。

Q位数6の群を分類したいです。

Gを位数が6の群とする
G≅Z/6Z or S3 のどちらかに同型になることを示したいのですが、
シローの定理からP3:3-Sylow部分群 s3:P3の個数 P2:2-Sylow部分群 s2:P2の個数
とすると、シローの定理からs3=1、s2=1,3となり、
(1)s2=1の時は、G≅Z/2Z×Z/3Z≅Z/6Z
ということは分かったのですが、
(2)s2=3の時はG≅S3になると思うのですが、これをどう示したらよいかが分かりません。
教えていただけませんですか?

Aベストアンサー

シローの定理より
2シロー群{e,a}が存在
3シロー群{e,b,b^2}が存在.3シロー群はひとつしかない.

そこで ab の位数 o(ab) を考える

o(ab)=1,2,3,6である

o(ab)=1ならば ab=e,b=a^{-1}=aで不適

o(ab)=6ならば 位数6の群Gに位数6の要素があるので
Gは巡回群Z/6Z

o(ab)=2ならば abab=e つまり aba=b^{-1}
つまり Gはa^2=e, b^3=e aba=b^{-1}で生成される群でありこれは
三次二面体群D_3すなわち3次対称群S_3

o(ab)=3ならば
abが生成する巡回群<ab>は3シロー群
3シロー群はひとつしかないので
ab=e,b,b^2
ab=eは不適
ab=bも不適
ab=b^2も不適
よってo(ab)は3とはならない

以上より
位数6の有限群は
巡回群か3次の対称群

実際はもっと強いことがいえて
素数p,qに対して
位数pqの群が決定できます
シローの定理と自己同型の組合せ
♯ぐぐると力作のPDFがすぐ見つかります

Q同型とは?

複素解析の本に
『複素数からその共役にうつる演算は体Cの1つの自己同型である』
とか
『体Cの同型で部分体Rの元を動かさないものはα→α(つまりなにも動かさぬ同型)とこの共役に限る』
とあるんですが、『同型』という言葉の定義について何も書いてありません。

同型とはなんですか?

Aベストアンサー

2つの体KとLが同型というのは、
KとLが同じ構造をしている
ということで、ぶっちゃけた話
KとLは同じものだと思ってもさしつかえないよ
ということです。
(これは私の同型というものに対するイメージです。)

厳密には、
2つの体KとLが同型というのは、KからLへの同型写像がある
というもので、同型写像とは
全単射な準同型写像
のことです。
KからLへの準同型写像とは
任意のa,b∈Kに対し f(a+b)=f(a)+f(b),f(ab)=f(a)f(b)
を満たすKからLへの写像(関数)fのことです。

例を1つ。
R^2={(x,y)| x,yは実数}と複素数体Cは同型です。
R^2からCへの写像fを
f(x,y)=x+iy (iは虚数単位)
と定めるとfは同型写像になるからです。
R^2とCは同型なのですから
R^2とCはほとんど同じものだと考えてよいことになります。

また、自分から自分への(つまりCからCとか)の同型写像を
自己同型写像、あるいは略して自己同型といいます。
f(x+iy)=x-iy というある複素数をその共役に写すという写像fは
自己同型写像になりますよ、というのが
>『複素数からその共役にうつる演算は体Cの1つの自己同型である』
の述べていることです。

詳しく知りたいのでしたら代数学の本をひもとく必要がありますが、
そこを理解しないと先へ進めないということもないでしょうから、
(というのは質問にある『体Cの同型でうんぬんなんてのは
複素解析を学ぶ上でははっきり言ってどうでもいいことだからです)
頭の片隅にでも残しておいて飛ばしてもいいと思いますよ。

2つの体KとLが同型というのは、
KとLが同じ構造をしている
ということで、ぶっちゃけた話
KとLは同じものだと思ってもさしつかえないよ
ということです。
(これは私の同型というものに対するイメージです。)

厳密には、
2つの体KとLが同型というのは、KからLへの同型写像がある
というもので、同型写像とは
全単射な準同型写像
のことです。
KからLへの準同型写像とは
任意のa,b∈Kに対し f(a+b)=f(a)+f(b),f(ab)=f(a)f(b)
を満たすKからLへの写像(関数)fのことです。

例を...続きを読む

Q群Gの元aの位数

35歳すぎにして、代数学の初心者です。
代数における群Gの元aの位数の意味がよくわかりません。位数って群の元の数ですよね?ってことは、元aが位数を持つということは、元aも群だということなのでしょうか?元aは群Gの部分群でないと、元aは位数を持たないのでしょうか?
これがわからないので、「群Gの元aの位数がmnならばa^nの位数はmであることを示せ」などといわれても、ちんぷんかんぷんです。
どなたか、判りやすく教えていただける方がいましたら、よろしくお願いいたします。

Aベストアンサー

#4です。
補足に対して少しお答えします。
群に入っている演算は何でもいいわけですが
乗法が分かりやすいし、よく説明に使われると思うので
(質問にa^nという表現もあることですし)
乗法で話をします。

群は演算に関して閉じています。
だからaがあればaを何回か掛けてできる数は全部入って
いなければいけません。

よってa^nはGに入っています。(当然nは自然数)
Gの位数が有限ならa^nはどこかで繰り返しにならないとGの位数より個数が増えてしまいます。
証明は難しく無いですが略します。感覚的にはわかってもらえると思います。

だからa^n=e(単位元)となるnが存在するといえる
わけです。1回繰り返しになれば後はその倍数で繰り返し
になりますので「最小の」と断ったのです。

(乗法の例
1のn乗根a^n=1乗法の単位元

加法でいえばa,2a,3a・・・・,na=0加法の単位元
となります。例:割り算したときの余り)

Q商空間の概念が全く分かりません

http://pantodon.shinshu-u.ac.jp/topology/literature/quotient_topology.html

商空間の定義はここに書かれてある通りなのですが、
これを呼んでもどういうものなのか全くよく分かりません。
そもそも商という名前がついているのに、どこに商(割り算)のような因子が含まれているのでしょうか?
どなたか具体例を挙げて教えて下さい。

Aベストアンサー

>写像f:X->Yが空間Xより空間Yへ全射な連続写像とする。ただしYは商位相をもっている。Zを空間としたとき写像g:Y->Zが連続である必要十分条件は、
合成写像gf:X->Zが連続写像となることである。

・・・これは定義じゃないですな.
そもそも「商空間」ですらない.
商空間にいれる「自然な位相」のことを
「商位相」というんだけども
商空間と商位相はまったく別物.
もっと初歩的な位相空間・代数・位相幾何の本を読みましょう.
その本は間違いなくあなたにはレベルが高すぎるのでしょう.

集合X上の関係Rで以下の条件を満たすものを同値関係という
Xの任意の元x,y,zにたいして
(1) xRx
(2) xRy <=> yRx
(3) xRy かつ yRz ならば xRz
この同値関係Rを用いて,Xの任意の元xに対して
集合{y∈X | yRx}を定める.これをxのRによる同値類といい
[x]と表す.
このとき,同値類の集合{[x] | x∈X}を
X/R と表し,XのRによる商集合(商空間)という.
#これはまさに同値関係でつながるということで
#空間を割り算しているようなもの

このとき,自然な写像
p_R: X -> X/R を p(x)=[x] によって定める.
これを商空間への「射影」と呼ぶ.

Xが位相空間であるとき,射影p_Rが連続となる
最小の位相をX/Rに導入する.
すなわち,Xの任意の開集合Oに対して,
X/Rの部分集合 p_R^{-1}(O) が開集合であるとして
X/Rに位相を導入する.
この位相のことを,X/Rの商位相という.

これを拡大解釈して,
一般に全射 f:X -> Y に対して
f^{-1}(O) (OはYの開集合)がXの位相を定めるときに
Xには商位相が入っているという.
このとき,写像g;Y -> Zを考える.
Zの開集合Oに対して,gf:X->Zに対して
(gf)^{-1}(O)= f^{-1}(g^{-1}(O))
であることに注意する.
gが連続であるならば,fが連続なので合成gfは連続
gfが連続あるならば,
(gf)^{-1}(O)=f^{-1}(g^{-1}(O))
は開集合.fは連続で,Xは商位相をもつので
Yの開集合Vが存在して,V=g^{-1}(O)とできる
すなわし,gは連続である.

以上かな.
大抵の基本的な本にはこの程度のことは
必ず出てるから,大学生にしては調べ方や
本の探し方がかなり甘いといわれても仕方がないでしょう.

>写像f:X->Yが空間Xより空間Yへ全射な連続写像とする。ただしYは商位相をもっている。Zを空間としたとき写像g:Y->Zが連続である必要十分条件は、
合成写像gf:X->Zが連続写像となることである。

・・・これは定義じゃないですな.
そもそも「商空間」ですらない.
商空間にいれる「自然な位相」のことを
「商位相」というんだけども
商空間と商位相はまったく別物.
もっと初歩的な位相空間・代数・位相幾何の本を読みましょう.
その本は間違いなくあなたにはレベルが高すぎるのでしょう.

集合X上...続きを読む

QG,G'を有限群とし,ψ:G→G'を準同型とするとき

G,G'を有限群とし,ψ:G→G'を準同型とするとき
Im ψの位数がG,G'の位数の約数となることを証明せよ.
また,G,G'の位数が互いに素なとき,GからG'への準同型写像をすべて求めよ.
という問題なのですが,Im ψがG'の部分群であり,ラグランジュの定理より
Im ψの位数がG'の位数となることはわかるのですが,他がわかりませんどなたか解説お願いします.

Aベストアンサー

準同型定理より、G/kerΨとImΨは同型となるからGの位数は
ImΨの位数とkerΨの位数の積になるから、ImΨの位数はGの約数である。

したがって、ImΨの位数はGの位数とG'の位数の公約数である。
ImΨの位数が2以上と仮定すると、ImΨの位数はGの位数とG'の位数の
2以上の公約数となり、Gの位数とG'の位数が互いに素であることに反する。
したがって、ImΨの位数が1である。

またG,G'の単位元をそれぞれe,e'とする
Ψ(e)=Ψ(e*e)={Ψ(e)}{Ψ(e)}={Ψ(e)}^2よりΨ(e)=e'がいえる。
ImΨの位数が1であることを考慮するとImΨ={e'}
よって、ΨはGの任意の元xをe'に移す、すなわち
Gの任意の元xに対して、Ψ(x)=e'となる。

Q群Gの部分集合Mによって生成されるGの部分群

定理 群Gの部分集合Mによって生成される部分群H=〈M〉はMを含むGの部分群のうち最小なものである。

証明 H⊃MであることはHの定義より明らかである。また、Mを含むGの任意の部分群をUとすれば、Mの元のべき積はすべてUに含まれ、H⊂Uを得る。したがって、HはMを含む最小な部分群である。

(1)なぜMの元のべき積で表される元の全体Hは明らかにGの部分群なんでしょうか。
例えばもし部分集合Mに単位元、逆元がなかったらHは部分群にならないように思えます。
(2)証明の2文目までは理解できましたが、
「したがって」以降、つまり3文目が理解できません。H⊂UからなぜHが最小だと言えるのでしょうか。

よろしくお願いします。

Aベストアンサー

何処が納得いかないのかな。

例えば、Aを実数の集合とするとき、ある実数aが「Aに含まれ、Aの任意の要素より大きくない」ならば、aはAの最小値である。と言うことは、納得できますか。本質的には同じですよ。


もしかすると、部分群としての包含関係と部分集合としてのそれがごっちゃになっているとか。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング