
No.2ベストアンサー
- 回答日時:
x の n 次関数 y を
y = a[n] x^n + a[n-1] x^(n-1) + ・・・ + a[1] x^1 + a[0]
と書きましょう。係数 a[i] は全部で n+1 個あり、これらが決まればy が決まります。いま、n+1 個の点の座標 (x,y) が与えられるとすると、それらを上の式に代入することにより、n+1 個の式が得られます。それらの式を係数 a[i] に関する連立方程式として解くことができれば、係数が決まります。
ただし、例えば、与えられた n+1 個の点が一直線上に並んでいると、n≧2 であっても一次関数しか決まらないように、求められる関数の次数は n より低くなることがあります。
また、例えば (0,0) と (0,1) を通る直線の式は y = a[1] x + a[0] の形では求められないように、解が求められないこともあります。その場合には、座標軸を回転するなどの工夫をして考え直す必要があります。
No.3
- 回答日時:
既にある内容は略して
「直線」をどのような定義にするか、で
>一意に決まりますよね。
とは言い切れません。
たとえば、平面を球体面と定義した場合(非ユークリッド幾何)は、
2点(たとえば、南極と北極)を通る直線は、無数に描けます。
No.1
- 回答日時:
n次関数の一般的な形を考えます。
例えば6次関数は
ax^6+bx^5+cx^4+dx^3+ex^2+fx^1+gx^0
になります。
このときの係数の数は、「n+1個」(n乗から0乗まで)になりますから、点のx座標を代入していって出来た係数だけの式が「n+1個」になれば連立方程式で解くことが出来ます。
係数が決まれば式も決まります。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
平面上に10本の直線が、どの二...
-
直線の方程式について。 x軸に...
-
無理数である数をなぜ数直線上...
-
『2直線y=-x, y=√3 xのなす角θ...
-
正五角形
-
y=0.5x+1 グラフの書き方教えて...
-
数学IIの基礎~軌跡~
-
数学 空集合
-
放物線と直線が1つだけ共有解...
-
関数について
-
【問題】楕円x^2/a^2+y^2/b^2=1...
-
数学 直線の方程式
-
完全定数分離か、部分定数分離か
-
2次の伝達関数のゲイン線図につ...
-
2直線の交点を通る直線の式につ...
-
線の7等分する方法を教えてくだ...
-
自然数の列を次のような群に分...
-
伸び率のマイナス数値からのパ...
-
1から9までの9個の数字から異な...
-
3分の2時間を 分に直すにはどー...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
数学 空集合
-
直線の方程式について。 x軸に...
-
線の7等分する方法を教えてくだ...
-
無理数である数をなぜ数直線上...
-
エクセル 交点の求め方
-
軌跡の問題で、除外する場合の...
-
【数学】3点 A(−2 , 1) , B(2 ...
-
2直線の交点を通る直線の式につ...
-
【問題】楕円x^2/a^2+y^2/b^2=1...
-
2線の交点の求め方教えて下さい。
-
画像の問題(2)について、解説で...
-
至急お願いします!! 極限!
-
急!! 座標を用いた図形の性質証明
-
0<=θ<2πのとき この答えは、緑...
-
円を縦横線で16等分
-
任意の角度で線を引く
-
ひし形の中心
-
複数の範囲を通る直線の求め方...
-
証明問題
-
数学の基礎事項~座標平面上の...
おすすめ情報