ᅫ�^ᅫ�^ᅫ�^ᅫ�^ᅫ�^ᅫ�^ᅫ�^ᅫ�zᅫ�^ᅫ�^ᅫ�^ᅫ�^ᅫ�^ᅫ�^ᅫ�^ᅫ�eᅫ�^ᅫ�^ᅫ�^ᅫ�^ᅫ�^ᅫ�^ᅫ�^��ᅫ�\ᅫ�^ᅫ�\ᅫ�^ᅫ�^ᅫ�^ᅫ�\
の検索結果 (10,000件 21〜 40 件を表示)
画像において、質問がございます。 ①,何のためにg(z)=(z-π/2)tan(z)を作ったのでしょ
…画像において、質問がございます。 ①,何のためにg(z)=(z-π/2)tan(z)を作ったのでしょうか? g(z)=tan(z)/(z-1/2)^(n+1)ではなかったのでしょうか? ②,なぜ、g(z)=(z-π/2)tan(z)ではなく、g(z)=(z-π/2)tan(z)...…
今更で申し訳ないのですが、疑問が2つあります。 ①g(z)=tan(z)(z-π/2)でz→π/2(
…今更で申し訳ないのですが、疑問が2つあります。 ①g(z)=tan(z)(z-π/2)でz→π/2(z=π/2)の時は、g(z)の式は収束する為、コーシーの積分定理によってa(n)は0になると思ったのですが、なぜ画像のよ...…
質問1, a(n) = 1/(n+1)! lim[z->π/2] (d/dz)^(n+1) [(z-
…質問1, a(n) = 1/(n+1)! lim[z->π/2] (d/dz)^(n+1) [(z-π/2)tan(z)] に含まれるg(z)=(z-π/2)tan(z)の留数(residue)を求めるために、 g(z)をテイラー展開します。 展開した式から(z-π/2)の係数を取り出します。 取り...…
「f(z)=1/(z^2-1)に関して ローラン展開を使う場合、マクローリン展開を使う場合、テイラー
…「f(z)=1/(z^2-1)に関して ローラン展開を使う場合、マクローリン展開を使う場合、テイラー展開を使う場合で、 それぞれ、zが0.001の時の近侍値を求めるまでの過程の計算を教えて下さい。」 ...…
a(n) = 1/(n+1)! lim[z->π/2] (d/dz)^(n+1) [(z-π/2)t
…a(n) = 1/(n+1)! lim[z->π/2] (d/dz)^(n+1) [(z-π/2)tan(z)] に含まれるg(z)=(z-π/2)tan(z)の留数(residue)を求めるために、 g(z)をテイラー展開します。 展開した式から(z-π/2)の係数を取り出します。 取り出し...…
「 f(z)=Σ_{n=-∞~∞}a(n)(z-a)^n(ローラン展開の式)より
…「 f(z)=Σ_{n=-∞~∞}a(n)(z-a)^n(ローラン展開の式)より、マクローリン展開はnが正の範囲でしか展開できないため、 n=0~∞として、またa=0(aは近似したい位置のx座標であり、このx座標が0の時、...…
f(z)=(z^2-1)のテイラー展開とマクローリン展開とローラン展開について質問があります。 質問
…f(z)=(z^2-1)のテイラー展開とマクローリン展開とローラン展開について質問があります。 質問1, f(z)=(z^2-1)のテイラー展開とマクローリン展開の導き方を詳しい過程の計算を用いて教えて頂...…
lim[n→∞](1-1/n)^n=1/e について
…こんにちは lim[n→∞](1+1/n)^n=e が成り立つことは簡単に示せるのですが、 lim[n→∞](1-1/n)^n=1/e となることの証明はどのようにすればいいのでしょうか? ご存知の方がいらっしゃいました...…
複素数の問題について
…(1)z^5=1を満たす複素数zをすべて求め、複素平面に図示せよ。 (2)上記の解のなかで、複素平面で第一象限にあるものをωとあらわす、ω^4+ω^3+ω^2+ω=1となることを示し、ω+1/ωの値を求め...…
2024.5.8 08:24の質問の 2024.5.11 16:58の解答の 「f(z)がz=aでj
…2024.5.8 08:24の質問の 2024.5.11 16:58の解答の 「f(z)がz=aでj位の極をもつとき f(z)=Σ{n=-j~∞}a(n)(z-a)^n g0(z)=f(z)(z-a)^j a(n)={1/(n+j)!}lim[z->a](d/dz)^(n+j)f(z)(z-a)^j a(n)=res(f(z)/(z-a)^(n+1),a) gn(z)=f(z)/(z-a)^(n+1) と...…
eの2πi乗は1になってしまうんですが。
…オイラーの公式からθ=2πと代入するとeの2πi乗は1となってどうも矛盾が生じてしまうんですが。本来eの0乗が1と定義したので、もしも仮にeの2πi乗は1であると仮定すれば2πi=0となっておかし...…
方程式 e^x=x+1 の解
…久しぶりに微積を復習しています。 e^x = x+1 を満たすxの1つはx=0であることはわかりますが、 それ以外にないことはどうやって示されるのでしょう? 実数の範囲、複素数の範囲で考察す...…
(a、bは定数) z、x、yという変数があったときz=ax+byという式があったら微分形は(δz/δ
…(a、bは定数) z、x、yという変数があったときz=ax+byという式があったら微分形は(δz/δx)y=a、(δz/δy)x=b でいいですか? 全微分形式で書くとdz= (δz/δx)y.dx+ (δz/δy)xdy ですか? 全微分形式と微分...…
x^3+y^3+z^3
…こんばんは。 よろしくお願いいたします。 x^3+y^3+z^3=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)+3xyz になるのどうしてでしょうか。 どうぞ、よろしくお願いいたします。…
(2)解説してください!! 数2の問題です。答えは(x +y+z)(x2+y2+z2−xy−yz−z
…(2)解説してください!! 数2の問題です。答えは(x +y+z)(x2+y2+z2−xy−yz−zx)です。…
数学Ⅲ 極形式質問 arg zの計算方法がよくわからないです。問、複素数z=r(cosθ+
…数学Ⅲ 極形式 質問 arg zの計算方法がよくわからないです。 問、複素数z=r(cosθ+isinθ)とするとき -z を求めよ。 解答、arg(-z)=arg z +π=θ+π となるのですが、 なぜ、arg(-z)=arg z +πとな...…
サなのですが、解答に厚さΔzの気柱内に含まれる分子数をΔN(z)とし、状態方程式を立てると、P(...
…サなのですが、解答に厚さΔzの気柱内に含まれる分子数をΔN(z)とし、状態方程式を立てると、P(z)・L²Δz=ΔN(z)RT/NAとあったのですがなぜ圧力がP(z)なのですか?たぶんコの式を使うのだと思い...…
フェアレディZなんですが z33とz34 どっちに乗ろうか迷っています z33だったら後期最終型の6
…フェアレディZなんですが z33とz34 どっちに乗ろうか迷っています z33だったら後期最終型の6MTで z34だったらベースグレードの7ATで 迷っています。 z34は実馬力とz33の実馬力 トランクの広さな...…
こちらの式はtan(z)のローラン展開の式です。 tan(z) =a(-1)/(θ-π/2)+a(0
…こちらの式はtan(z)のローラン展開の式です。 tan(z) =a(-1)/(θ-π/2)+a(0)+a(1)(θ-π/2)+a(2)(θ-π/2)^2+a(3)(θ-π/2)^3+... =-1/(θ-π/2)+(1/3)×(θ-π/2)+0+... この式のa(-1),a(0),a(1),a(-2)の値を画像の青い下線部のa(n)の...…
7z の圧縮について
…単刀直入に聞きますが、7zで圧縮されたものは、可逆圧縮なのですか?非可逆圧縮なのですか? 非可逆圧縮だとは思うのですが、圧縮前のファイルと、圧縮して解凍した後のファイルでは...…
検索で見つからないときは質問してみよう!