
(1)z^5=1を満たす複素数zをすべて求め、複素平面に図示せよ。
(2)上記の解のなかで、複素平面で第一象限にあるものをωとあらわす、ω^4+ω^3+ω^2+ω=1となることを示し、ω+1/ωの値を求めよ。
(3)cos(2π/5)の値を求めよ。
(1)については1、e^(2πi/5)、e^(4πi/5)、e^(6πi/5)、e^(8πi/5)、となるのであろうということまでは本を読んでいてわかったのですが、(2)のω=e^(2πi/5)となるところ以降がわかりません。
どなたかわかるかた、よろしくお願いいたします。
No.3ベストアンサー
- 回答日時:
普通は、#1さんが示されている方法が一般的なんだろうが。
。。。笑>(1)z^5=1を満たす複素数zをすべて求め、複素平面に図示せよ。
|z|=1より、z=cosθ+i*sinθと置けるから(iは虚数単位)、z^5=1に代入すると、ド・モアブルの定理より、z^5=cos5θ+i*sin5θ=1。
従って、cos5θ=1、sin5θ=0. 0≦θ<2πから 0≦5θ<10π。
ところが、5θ=2nπより 0≦2nπ<10πであるから、n=0、1、2、3、4。
>(2)上記の解のなかで、複素平面で第一象限にあるものをωとあらわす、ω^4+ω^3+ω^2+ω=1となることを示し、ω+1/ωの値を求めよ。
>(3)cos(2π/5)の値を求めよ。
4次方程式の解と係数の関係でも解けるが、面倒なので、ω^5-1=(ω-1)*(ω^4+ω^3+ω^2+ω+1)=0で、ω-1≠0よりω^4+ω^3+ω^2+ω+1=0.
さて、ω+1/ωの値と、cos(2π/5)の値の値を一挙に解いてしまおう。
複素平面で第一象限にあるものをωという条件から、5θ=2π。
又、ω+1/ω=(cosθ+i*sinθ)+(1)/(cosθ-i*sinθ)=(cosθ+i*sinθ)+(cosθ+i*sinθ)=2cosθ=2cos(2π/5)。
つまり、cosθ(2π/5)の値を求めると良い。
5θ=2πより、3θ=2π-2θであるから、両辺のcosをとると、4(cosθ)^3-2(cosθ)^2-3(cosθ)+1=(cosθ-1)(4cos^2θ+2cosθ-1)=0となるから、cosθ>0に注意して、cosθ=cos(2π/5)=(√5-1)/4.
従って、ω+1/ω=2cos(2π/5)=(√5-1)/2..
非常にわかりやすかったです。ありがとうございました。
公式をさっと説明されただけだったので、ド・モアブルの定理の使い方もよくわかっておらず、勉強になりました。変則的な解き方というか、答えが予測できないと解けない解き方のように感じました。回答者さまは数学得意なのでしょうね・・・。うらやましい限りです。
ありがとうございました。#4の訂正のほうもありがとうございました。助かりました。
No.4
- 回答日時:
またもや、ミスを発見。
。。。笑>ところが、5θ=2nπより 0≦2nπ<10πであるから、n=0、1、2、3、4。
↓
ところが、5θ=2nπより 0≦2nπ<10nπであるから、n=0、1、2、3、4。
>又、ω+1/ω=(cosθ+i*sinθ)+(1)/(cosθ-i*sinθ)=(cosθ+i*sinθ)+(cosθ+i*sinθ)=2cosθ=2cos(2π/5)。
↓
又、ω+1/ω=(cosθ+i*sinθ)+(1)/(cosθ+i*sinθ)=(cosθ+i*sinθ)+(cosθ-i*sinθ)=2cosθ=2cos(2π/5)。
No.2
- 回答日時:
>1、e^(2πi/5)、e^(4πi/5)、e^(6πi/5)、e^(8πi/5)
偏角 = (0πi/5), (2πi/5), (4πi/5), (6πi/5), (8πi/5) のうち、
第一象限 (0 < 角 < π/2) にあるのは (2πi/5)
ということなのでしょう。
>ω+1/ωの値を求めよ。
ω= e^(2πi/5) を代入すると、
ω+1/ω
= e^(2πi/5) + e^(-2πi/5) = cos(2π/5) + i*sin(2π/5) + cos(2π/5) - i*sin(2π/5)
= ?
それにしても cos(2π/5) ってどう勘定して見せれば好いのですかね。
No.1
- 回答日時:
ん~, (2) は ω^4 + ω^3 + ω^2 + ω + 1 = 0 の間違いですよね.
これは ω が ω^5 - 1 = 0 かつ ω - 1 ≠ 0 から簡単にわかるはず. で, 先の 4次方程式は相反方程式なので ω^2 (≠ 0) で割ってゴニョゴニョすると (ω + 1/ω) に関する 2次方程式が立ちます.
この解が求まれば (3) は余裕なはず.
すみません、回答者さまのおっしゃるとおりで、(2)は間違いです。ありがとうございます。
初項1、公比ωの等比数列の第五項までの和、にすると(1-ω^5)/1-ωになって ω^4 + ω^3 + ω^2 + ω + 1 = 0 がしめせ、またω^2で割ると{ω+(1/ω)}^2+{ω+(1/ω)}=0がでてきて、それをとけばいいのですね。すごくわかりやすくて助かりました。ありがとうございました。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 複素数の集合D={z: |z|≦2、π/6 ≦argz≦π/2 }の存在範囲を複素数平面上に図示せよ 1 2022/08/01 10:53
- 数学 複素数の答えはいくつになりますか? 3 2022/12/20 12:55
- 数学 複素数についての質問です。 1+iの主値を求める問題で回答が以下のようになっていました。 1+i = 5 2022/07/22 04:04
- 大学・短大 複素関数についての問題です。 x軸、y軸をそれぞれ実軸、虚軸とする複素平面上の点は z=x+iyで与 1 2023/05/10 21:34
- 数学 方程式 √x=-1 の解 2 2022/07/08 17:26
- 数学 この問題教えて欲しいです。 複素数の極表示 z=a+ib=re^iθ z*=a−ib=re^−iθ 4 2022/05/01 00:09
- 数学 再度質問失礼します。 複素数の極表示 z=a+ib=re^iθ z*=a−ib=re^−iθ 1.a 2 2022/05/01 18:33
- 数学 複素関数にロピタルの定理を使おうとしている回答者は、複素関数論はおろか微積分学もよく分かっていない、 5 2022/12/28 18:02
- その他(教育・科学・学問) 関数、写像について 1 2022/04/10 23:45
- 数学 sinh2z=0を満たすz(z=x+iy)を求める問題で、写真の上下の2通りの解法はどちらも正しいで 1 2023/04/11 16:38
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
1+cosθをみると何か変形ができ...
-
数学の質問です。 0≦θ<2πのとき...
-
e^2xのマクローリン展開を求め...
-
1/ a + bcosx (a,b>0)の 不定積...
-
eの2πi乗は1になってしまうんで...
-
数学についての質問です △ABCで...
-
テーラー展開で数値を求めたい...
-
正十二面体の隣接面が成す角度?
-
cos40°の値を求めています。
-
4cos【3】θ+2cos【2】θ-3cosθ-1...
-
不定積分
-
助変数tを用いて,サイクロイド...
-
この積分の計算方法がわかりません
-
三角比
-
複素数の実部と虚部
-
数学です
-
数II 三角関数
-
x^2+y^2=1の条件下で f(x,y)=x^...
-
高校数学ベクトルについて aの...
-
至急です!曲線の曲線の求め方...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
数学の質問です。 0≦θ<2πのとき...
-
1+cosθをみると何か変形ができ...
-
cos(2/5)πの値は?
-
e^2xのマクローリン展開を求め...
-
eの2πi乗は1になってしまうんで...
-
高校数学 三角関数
-
三角関数
-
三角関数
-
複素数zはz^7=1かつz≠1を満たす...
-
△ABCにおいてAB=4、BC=6、CA=5...
-
加法定理
-
不定積分∫dx/√(1-x^2)=arcsin(x...
-
cos2x=cosx ってなにを聞かれ...
-
角の三等分線の長さ
-
【数学】コサインシータって何...
-
1/ a + bcosx (a,b>0)の 不定積...
-
弓形の高さ
-
X5乗-1=0 の因数分解の仕方...
-
長方形窓の立体角投射率
-
複素数の問題について
おすすめ情報