����ᅫ�zᅫ�[��ᅫ�yᅫ�[ᅫ�Wᅫ�f��
の検索結果 (10,000件 1〜 20 件を表示)
内積の ・内積あるいはエルミート内積の性質、x, y, z ∈ V および λ ∈ ℂ を任意として
…内積の ・内積あるいはエルミート内積の性質、x, y, z ∈ V および λ ∈ ℂ を任意として第一変数に関する線型性: ⟨λx + y, z⟩ = λ⟨x, z⟩ + ⟨y, z⟩; と 線型の ・写像 f の線型性質の、f につい...…
x^3+y^3+z^3
…こんばんは。 よろしくお願いいたします。 x^3+y^3+z^3=(x+y+z)(x^2+y^2+z^2-xy-yz-zx)+3xyz になるのどうしてでしょうか。 どうぞ、よろしくお願いいたします。…
(a、bは定数) z、x、yという変数があったときz=ax+byという式があったら微分形は(δz/δ
…(a、bは定数) z、x、yという変数があったときz=ax+byという式があったら微分形は(δz/δx)y=a、(δz/δy)x=b でいいですか? 全微分形式で書くとdz= (δz/δx)y.dx+ (δz/δy)xdy ですか? 全微分形式と微分...…
1つの頂点から出る3辺の長さx,y,z ・・・この問題を
…この問題をzを消去してx,y(y,zあるいはz,xでもいいのですが) の式にして解きたいのですがうまくいきません。 x+y+z=6 xy+yz+zx=9 より z=6-x-y, xy+y(6-x-y)+(6-x-y)z=9 求めるv=xyz=xy(6-x-y) → f(x)=-y{x...…
n次交代式はしたの写真のように(x-y)(y-z)(z-x)(n-1次の基本対称式)表せるらしいので
…n次交代式はしたの写真のように(x-y)(y-z)(z-x)(n-1次の基本対称式)表せるらしいのですがなぜですか。(x-y)(y-z)(z-x)まではわかりますが次の因数の理由がわかりません。なぜ写真ではxy+yz+zxだけじ...…
yとf(x)の違いについて
…ずいぶん初歩的な質問ですみません。 y=…とおくのとf(x)=…とおくのとでどのような違いがあるのかよくわかりません。 2変数関数の時はf(x,y)=…とおかなければならないとは思うのです...…
数学の質問です。 (x-y-z+w)(x-y+z-w)において s=x-z t=z-wとおくと (s
…数学の質問です。 (x-y-z+w)(x-y+z-w)において s=x-z t=z-wとおくと (s-t)(s+t) となるそうなのですが、右のカッコ内には-z+wがあるのにどのように置き換えたのかが分かりません。 解説お願い致しま...…
数学 不等式の問題です。 ⑴を元に (x^3 + y^3 +z^3)^1/3 < (x^2 + y^
…数学 不等式の問題です。 ⑴を元に (x^3 + y^3 +z^3)^1/3 0,y>0,z>0とする。 を示したいのですが、解答で行なっている2文字から3文字への拡張というものがよくわかりません。教えてください…
x+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。
…クリックありがとうございます(∩´∀`)∩ ★x+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。 この問題について説明をお願いします。…
(2)解説してください!! 数2の問題です。答えは(x +y+z)(x2+y2+z2−xy−yz−z
…(2)解説してください!! 数2の問題です。答えは(x +y+z)(x2+y2+z2−xy−yz−zx)です。…
f(z)=tan(z)のマクローリン展開に関して、 「sin(z)/cos(z) を珪砂してください
…f(z)=tan(z)のマクローリン展開に関して、 「sin(z)/cos(z) を珪砂してください。 f(z)=(1/z)*{1 - z^2/3! + z^4/5! - ...}/{1 - z^2/2! + z^4/4! - ...} ですから、 z*f(z)={1 - z^2/3! + z^4/5! - ...}/{1 - z^2/2! + z^4/4! - ...} =c[0...…
gnuplot 4次元データ(3次元座標における値)の表示
…まず、次のようなデータファイルがあります。 ----- x1, y1, z1, f1 x2, y1, z1, f2 x3, y1, z1, f3 x1, y2, z1, f4 x2, y2, z1, f5 x3, y2, z1, f6 以下、延々と続く。 ----- gnuplotで、zをz1に固定して、xy平面上...…
過去に 「ii) f(z)=1/(z^2-1) r>2 C={z||z-1|=r} の時は ローラン
…過去に 「ii) f(z)=1/(z^2-1) r>2 C={z||z-1|=r} の時は ローラン展開は f(z)=Σ_{n=-∞~∞}a(n)(z-1)^n a(n)={1/(2πi)}∫_{C}{f(z)/(z-1)^(n+1)}dz n≧-1 n+1≧0 g(z)=f(z)/(z-1)^(n+1) a(n)={1/(2πi)}∫_{C}g(z)dz |z-1|…
真空中をy方向に伝搬する周波数f、振幅の大きさEmの平面波があり、電界はz方向に振動している...
…真空中をy方向に伝搬する周波数f、振幅の大きさEmの平面波があり、電界はz方向に振動している。 (a) この電界の波を直角座標系表記で示せ (b) このときの磁界の波を直角座標系表記で...…
「 f(z)=Σ_{n=-∞~∞}a(n)(z-a)^n(ローラン展開の式)より
…「 f(z)=Σ_{n=-∞~∞}a(n)(z-a)^n(ローラン展開の式)より、マクローリン展開はnが正の範囲でしか展開できないため、 n=0~∞として、またa=0(aは近似したい位置のx座標であり、このx座標が0の時、...…
f(z)=(z^2-1)のテイラー展開とマクローリン展開とローラン展開について質問があります。 質問
…f(z)=(z^2-1)のテイラー展開とマクローリン展開とローラン展開について質問があります。 質問1, f(z)=(z^2-1)のテイラー展開とマクローリン展開の導き方を詳しい過程の計算を用いて教えて頂...…
2024.5.8 08:24の質問の 2024.5.11 16:58の解答の 「f(z)がz=aでj
…2024.5.8 08:24の質問の 2024.5.11 16:58の解答の 「f(z)がz=aでj位の極をもつとき f(z)=Σ{n=-j~∞}a(n)(z-a)^n g0(z)=f(z)(z-a)^j a(n)={1/(n+j)!}lim[z->a](d/dz)^(n+j)f(z)(z-a)^j a(n)=res(f(z)/(z-a)^(n+1),a) gn(z)=f(z)/(z-a)^(n+1) と...…
検索で見つからないときは質問してみよう!