数式の前に付いているΣみたいなUの意味が分かりません。
U(union)という意味ではなく、数式の前に付いているUです。
Σみたいに下にk=0,上にnという感じで付いています。
Σ=a1+a2+a3+・・・・・・+
Π=a1xa2xa3x・・・・・・x
U=?
どういう意味なんでしょうか?また読み方はなんというんでしょうか?
ついでに、∩も分かるいといたら教えていただけないでしょうか?
お願いします。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

kanepさんこんばんは。


どういう状況でその式が書かれているのか分らないので何とも言えません。
出来ればその∪のついた数式なるものを全部書いて下さい。ついでにどんな
本のどんな話のところで書かれていたものか、と言う情報もお願いします。

で、推測ですが、もしかして測度論や確率論の本に出ていた式でしょうか?
それでしたらその記号は本来のunion(集合和)の意味だと思います。
その場合はa_1,a_2,…a_nというのは数ではなく集合をあらわします。
例えばn個の集合a_1,a_2,…a_n の和集合を
a_1∪a_2∪…∪a_n
と書く代わりに、まとめて
∪_{k=1}^n a_k
というふうに書きます。
(∪_{k=1}^nとは 大きい∪という記号の下にk=1 、上にnと書いてあることを意味します)
読み方としては通常の集合和と同じく「ユニオン」で良いと思います。
または説明的に「a_1からa_nまでの和集合」と読んでも構わないでしょう。
    • good
    • 1

それも union です。


すなわち、集合論で出てくる、「合併集合(和集合)」、
「共通部分」のことです。

U=a1Ua2Ua3U・・・・・・U
は和集合。

共通部分も同様の(Σ記号のような)書き方ができます。
    • good
    • 1

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q「頭悪いね」「バカだね」 どっちがよりムカつく?

こんにちは、

単純な質問です。

「お前、頭悪いな」

「お前バカだな」

どっちがより言われたらムカつきますか?

Aベストアンサー

どっちもそれなりにムカつきますけど・・・「頭悪いな」かな~

そう言う事を他人に平気で言う奴ほど、バカで頭の悪い人はいないと思いますけど・・・ね?
我がふりなおせよ~ってな感じです。

でもやっぱり傷つくな~否定はしないけど(苦笑)

QA∩(B-C)=(A∩B)ー(A∩C)の証明法

お世話になります。
よろしくお願いします。

集合について勉強中なのですが、

A∩(B-C)=(A∩B)ー(A∩C)

の証明できずに困っています。
ベン図を使わずに左辺から右辺を証明する方法を教えてください。
x∈{A∩(B-C)}と置く証明法です。
ちなみに右辺から左辺は何となくできました。

後もう一点あるのですが、
A∩(B-C)と(A∩B)ーCは同じでしょうか?

分かる方、よろしくお願いします。

Aベストアンサー

x∈{A∩(B-C)}とおくと
x∈A かつ x∈B-C
x∈A かつ x∈B かつ x∈C~
x∈Aかつx∈Bより x∈A∩B
C~⊆(A∩C)~,x∈C~より x∈(A∩C)~
∴ x∈(A∩B)-(A∩C)
ゆえに A∩(B-C)⊆(A∩B)-(A∩C)…(ア)

x∈{(A∩B)-(A∩C)}とおくと
x∈(A∩B) かつ x∈(A∩C)~
x∈A かつ x∈B かつ x∈(A∩C)~
x∈Aかつx∈(A∩C)~より x∈A∩C~
x∈A かつ x∈C~ かつ x∈B
∴x∈A∩(B-C)
ゆえに (A∩B)-(A∩C)⊆A∩(B-C)…(イ)

(ア)(イ)より A∩(B-C)=(A∩B)-(A∩C)

Q仕事が遅い、頭悪い、力仕事できない 不器用すぎるこんなパートメリットありますか?

仕事が遅い、頭悪い、力仕事できない
不器用すぎるこんなパートメリットありますか?

Aベストアンサー

仕事が早い、頭が良い、力仕事もできる
器用すぎるこんなパートに比べたら、見劣りしますが、
居ないよりはずいぶんましだと思いますよ。

Q(a+b−1)(a+b+1)の計算方法は、 a×a+b×b−1a+b+1a+b+(−1)1 =a^2

(a+b−1)(a+b+1)の計算方法は、

a×a+b×b−1a+b+1a+b+(−1)1
=a^2+b^2−1

であっていますでしょうか?

Aベストアンサー

順番通りに機械的に計算するのがコツです。

左の a と 右の a, -b, +1 をかける。
左の b と 右の a, -b, +1 をかける。
左の -1 と 右の a, -b, +1 をかける。

これを 「a・aがあって、b・bがあって...」と考えながらやると、抜けが出てしまいます。

あとは、既に出ていますが X=a+b とすると、よく知られた公式だけで解くことができて簡単になります。

Qこうゆう考えの人って頭悪いと思わないですか?

こうゆう考えの人って頭悪いと思わないですか?
CMとかで嫌いなタレント出てるからとかむかつくからという理由で商品買わない人
僕には理解出来ないですが何か?
商品なんて関係ないしあれですか?坊主にくけりゃ袈裟憎いって?
でも向こうもそうゆう考えもつ人にはかってもらいたくないからいいかなと思うけど

Aベストアンサー

なるほど、そういう考えもできますか!

広告というのは、その商品なりサービスが、一番いい方法で訴求できて、消費者に認知・浸透してアクションを起こしてもらうことが、最終的な目的ですよね。

そしてそのためには、(関係者のしがらみはともかくとして)それにマッチする、イメージを伝えられるに相応しいタレントを起用するのが普通です。
ですから、広告でそのタレントが出ることは、その商品なりサービスのイメージを背負っているということになります。

なので、質問者さまがおっしゃっている「タレントが嫌いだから商品を買わない」という人が出てきても、何らおかしくありません。
別に頭が悪いわけではありません。
よく、不祥事を起こしたタレントが出た時、そのタレントのCMを一斉に引き上げますね。それによって商品イメージが下がることを恐れてのことです。

Q(再投稿)R^n∋A_1,A_2,…はΣ[k=1..∞]λ^*(A_k)<∞を満たす.∩[n=1..∞]∪[k=n..∞]A_kはLebesgue外測度0?

すいません。
http://okwave.jp/qa4327195.html
について再投稿です。


A:=∩[n=1..∞]∪[k=n..∞]A_kと置いて
今,AがLegesgue可測集合である事を示したい訳ですよね。
Lebesgue可測集合とはλをLebesgue外測度とする時,
{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。
そこで疑問なのですがλはn次元区間塊全体に対して定義された写像ですよね。なのでλ(S∩E)とλ(S∩E^c)はそれぞれλ(E)+λ(E^c)で(∵E⊂∀S⊂R^n),一応は定義されているのですがλ(S)はSの採りようによってはλ(S)自体が定義されないという状況に陥ってしまいます(∵必ずしもSはn次元区間塊とは限らない)。
するとλ(S)≧λ(S∩E)+λ(S∩E^c)という不等式は意味を成さなくなります。
従って,AがLebesgue可測集合である事が示せなくなってしまいます。
Lebesgue可測集合の定義を勘違いしてますでしょうか?

すいません。
http://okwave.jp/qa4327195.html
について再投稿です。


A:=∩[n=1..∞]∪[k=n..∞]A_kと置いて
今,AがLegesgue可測集合である事を示したい訳ですよね。
Lebesgue可測集合とはλをLebesgue外測度とする時,
{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。
そこで疑問なのですがλはn次元区間塊全体に対して定義された写像ですよね。なのでλ(S∩E)とλ(S∩E^c)はそれぞれλ(E)+λ(E^c)で(∵E⊂∀S⊂R^n),一応は定義されているのですがλ(S)はSの採りようによってはλ(S)自体が定義され...続きを読む

Aベストアンサー

とりあえず教科書を読む.
定義が分かってなければ何もできない.

>Lebesgue可測集合とはλをLebesgue外測度とする時,
>{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。

こんなこと本当に書いてある?なんか読み落としているとか
説明の途中の何かだとか,勝手に創作してるとか?

>Lebesgue可測集合の定義を勘違いしてますでしょうか?
してる.
だって,それだったら「円」ですらルベーク可測じゃなくなる.

Qわざわざナイフからフォークに利き手を持ち替えないと食事出来ない人って、頭悪いの?躾がなってないの?

わざわざナイフからフォークに利き手を持ち替えないと食事出来ない人って、頭悪いの?躾がなってないの?



「俺、右利きだから」とかいう理由でフォークをいちいち右手に持ち替えないと食べられない育ちの悪いクソとは食事したくない。



右利きならナイフが右手、フォークが左手だろ。子どもでも知ってるわ。

それが出来ない成人とか脳腐ってるでしょ?


こんな腐った食事の仕方してる人って親に食事の仕方すら教わってないからこんな気持ち悪いことするんでしょうか?

それとも教わっても理解できないくらいに頭が悪いからなのか?

Aベストアンサー

私はオジサンです。
両親は2人とも地方出身です。イギリスではありません。日本です。
ナイフとフォークを使う食事なんて、した事がないし、必要もなく育ちました。
質問者様とは生きてる世界が違うようですね(笑)。
それとも、わざと炎上させるように挑発的に書いているのでしょうか?
質問者様は、カップ麺って、食べた事ないんでしょうね。
質問者様は、1日の食事代1000円未満なんて、経験ないんでしょうね。
世の中、あなたのような人ばかりではないのですよ。
自身の価値観だけで、相手を否定するのは、テーブルマナーより酷いマナーですよ。

Q a_1 = 1 , a_(n+1)=√(1+a_n) (n=1,2,

 a_1 = 1 , a_(n+1)=√(1+a_n) (n=1,2,3・・)に対して、次の問題に答えよ。
(1) a^2_(n+1) - a^2_n = a_n - a_(n-1) が成り立つことを示し、数列{a_n}が単調数列であることを示せ
(2) a_n<2 となることを示せ
(3) lim a_n (n→∞)を求めよ
以前に質問して答えていただいたのですが、(3)が、理解できませんでした。(3)から、途中式も詳しく教えてください。よろしくお願いします。

Aベストアンサー

#2 の訂正:
考える x を「x^2 = 1+x」としちゃうと問題があるので, ここは「x = √(1+x) を満たす x」としてください. ついでにそのあとの式も
a_(n+1) - x = √(1+a_n) - √(1+x)
から右辺の有理化という方針にしてください.
でも, 「前にした質問」の URL は書いてくれないのね.... その「前の質問」に答えた人への対応としても, ちゃんと「どの質問であるのか」を明記するのが人として正しいと思います.

Q30代なかばで派遣してます。頭悪いし、毎日サービス残業してもいいんだけど、あまり夜遅くまですると寝坊

30代なかばで派遣してます。頭悪いし、毎日サービス残業してもいいんだけど、あまり夜遅くまですると寝坊してしまうし、このまま派遣続けようかと考えてます。こんな人生もありですかねぇ?子供好きだけど、子孫も残さないつもりです。

Aベストアンサー

将来的な計画などを考えても、自分で良しと思えるならありだと思います。

ただ、生涯賃金にして二倍以上の差がつくと言われている非正規と正規では
老後の生活や、中年を過ぎる辺りからの生活に差が出てきます。
周囲との比較というのは自分で気を向ける以上に気になるものです。

また、実生活面でも万が一のことがあった場合など
様々な場面で不利な状況に立たされる可能性も考えるべきです。

そういった点から、生涯派遣労働というのは
今の社会、制度の状態ではお勧めしたいとは思えません。
ただ、正規労働よりもストレスが少ない場合があることも確かです。
ライフスタイルやワークスタイルは個人が選んでよいものですから
そういったリスクを考えてもなお、自分に合っている
もしくは、そういったスタイルが良いと思うのであれば
一つの生き方だと思います。

Aベストアンサー

(*)式が間違っているように見えますが・・・。これではn=3のときにしか成立しません。
n=4のとき
P(C(1)∪C(2)∪C(3)∪C(4))
= P(C(1))+P(C(2))+P(C(3))+P(C(4))
-P(C(1)∩C(2))-P(C(1)∩C(3))-P(C(1)∩C(4))-P(C(2)∩C(3))-P(C(2)∩C(4))-P(C(3)∩C(4))
+P(C(1)∩C(2)∩C(3))+P(C(1)∩C(2)∩C(4))+P(C(1)∩C(3)∩C(4))+P(C(2)∩C(3)∩C(4))
-P(C(1)∩C(2)∩C(3)∩C(4))
というのは理解されていますか?

正しくは、
P(∪[i=1..n]C(i))
= Σ[i=1..n]P(C(i))-Σ[i1,i2=1..n, i1<i2]P(C(i1)∩C(i2))+Σ[i1,i2,i3=1..n, i1<i2<i3]P(C(i1)∩C(i2)∩C(i3))
-Σ[i1,i2,i3,i4=1..n, i1<i2<i3<i4]P(C(i1)∩C(i2)∩C(i3)∩C(i4))+…+(-1)^(n-1)P(∩[i=1..n]C(i))
となり、交互に符号が代わり共通部分を取る集合の数も1つずつ増えます。

証明の方針はあっていますよ。

(*)式が間違っているように見えますが・・・。これではn=3のときにしか成立しません。
n=4のとき
P(C(1)∪C(2)∪C(3)∪C(4))
= P(C(1))+P(C(2))+P(C(3))+P(C(4))
-P(C(1)∩C(2))-P(C(1)∩C(3))-P(C(1)∩C(4))-P(C(2)∩C(3))-P(C(2)∩C(4))-P(C(3)∩C(4))
+P(C(1)∩C(2)∩C(3))+P(C(1)∩C(2)∩C(4))+P(C(1)∩C(3)∩C(4))+P(C(2)∩C(3)∩C(4))
-P(C(1)∩C(2)∩C(3)∩C(4))
というのは理解されていますか?

正しくは、
P(∪[i=1..n]C(i))
= Σ[i=1..n]P(C(i))-Σ[i1,i2=1..n, i1<i2]P(C(i1)∩C(i2))+Σ[i1,i2,i3=1..n, i1<i2<i3]P...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング