「みんな教えて! 選手権!!」開催のお知らせ

我が社のルールで、3者価格見積もりとった時、3者の平均±30%と、3者の平均±標準偏差の狭い方に入らない見積は異常値としてモノは良くても採用しないというルールがあります。
平均±30%はまだしも、たった3つしか母集団が無いのに、標準偏差を使うのはどうかと思うのですが、上手く説明できません。これって変ですよね?

A 回答 (5件)

#3です。



ご質問者様の違和感はこういうことですよね。
「平均±30%」は物差し上の単なる幅、
「標準偏差」は平均からの乖離の「2乗」がベース。3個でもいいのか!時と場合によって大きく動きすぎるんじゃないのか!

まさに、レンジ(範囲)から求めるR/d2は前者に相当し、偏差平方和から求めるsは後者に相当します。
便宜上の話だから関係無いのではなく、ご質問者様の直感どおり前者が妥当なのは明らかだと考えます。

というか、関係ないと思う人は構いませんが、多くのメーカーでは不偏化定数を使っており、「JIS Z 9021管理図」には明記されていることですので、ご質問者様がルールを改善されたいのであれば、それを説明にご使用されれば良いかと思います。
    • good
    • 0

標準偏差という言葉に惑わされるから、変な気持ちになるのでは?


母集団が小さいとか、不偏性がないとか、関係ないです。
その「ルール」は、要するに3者の平均からあまり離れたやつはダメ
だと言っているだけです。±30%とか±標準偏差とかの幅は
便宜的に与えてあるだけですよ。
    • good
    • 0

企業で統計を推進する立場の者です。



的外れの回答であれば、お許し下さい。

バラツキの指標として標準偏差を使うことは良いと思いますが、ご質問者のご指摘どおり、3つしかないサンプルの標準偏差を、通常の計算方法で求めることが間違いなのです。

偏差平方和を(nー1)で割ったものを不偏分散、その平方根を標準偏差といいますが、標準偏差は不偏ではありません。

ご質問者の直感どおり、たった3つの標本から上の方法で求めた標準偏差は真の標準偏差より小さい側に偏ります。

そこで、品質管理で用いる管理図では、少数の抜取サンプルからバラツキを求めるときは、不偏分散の平方根ではなく、標本のレンジをd2という統計量で割ったR/d2を標準偏差とするように規定している企業が多いです。

n=10くらいで、両者の差は殆ど無くなります。

「不偏化定数 d2」とかでググれば詳細を調べることができます。
    • good
    • 0

何のために「3社の相見積り」をしているんでしょうね。


きちんと「要求仕様」を提示し、相手からも「見積仕様書」をもらっているのなら、仕様から見積内容を「査定」できるはずなので、そんな「仕様も確認せずに金額だけ」で判断することはないはずですが。

ひょっとして公共団体ですか?
見積りは「よきにはからえ」で、査定能力なしとか。

1社の異常値があったら残り2社のどちらか、2社の異常値があったら残り1社に決めるのですかか?
理不尽な決め方だと思います。
    • good
    • 0

見積もりの本分が分かっていない会社では?


モノがよくて安かったら、普通はその見積もりを採用しますね。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!


おすすめ情報