
A 回答 (7件)
- 最新から表示
- 回答順に表示
No.7
- 回答日時:
←No.5
No.3 で数えていて No.4 は数えてない 1×1×4×3 個は、
そっちじゃなく
千の位の数字が 2 で、百の位の数字が 4 より大きいもの
のほうだよ。どっちも 12 個だけど。
No.6
- 回答日時:
樹形図のようなもので 考えるなら、
2400 より大きな数は 2401, 2403, 2405,
2410, 2413, 2415, 2430, 2431, 2435・・・として,
2400代の数を まとめる。
次に 2500代、3000代、3100代 と 順番にカウントすれば
答になる筈です。
No.5
- 回答日時:
補足)No.3さんのは千の位の数字が 2 で、百の位の数字が 4 より大きいものが 1×1×4×3 個←これが不要じゃないかな。
百の位が4であればあとは全部2400より大きくなるからね。
No.4
- 回答日時:
お答えします。
ご参考に。
Q)6個の数字0,1,2,3,4,5,を使ってできる次
のような整数は何個あるか?ただし、
同じ数字は2度以上使わないとする。
>>A)
まず4桁の整数は全部で300個。なので2,160個はありえません。
千の位…5通り(0を使えないので)
百の位…5通り
十の位…4通り
一の位…3通り
5×5×4×3=300個
うち2400より大きい整数は、
まず、千の値と百の値をそれぞれ2、4で固定して何個あるかを導きだします。(i)
(i)千の位を2で固定…1通り
百の位を4で固定…1通り
十の位…4通り
一の位…3通り
1×1×4×3×=12個
あとは千の位が3.4.5の3パターンで導きだせば必然的に2400より大きい整数が出ます(ii)ので、
(ii)千の位…3通り
百の位…5通り
十の位…4通り
一の位…3通り
3×5×4×3=180個
合計
(i)+(ii)=192個
No.3
- 回答日時:
千の位の数字が 2 より大きいものが 3×5×4×3 個。
千の位の数字が 2 で、百の位の数字が 4 より大きいものが 1×1×4×3 個。
千の位の数字が 2、百の位の数字が 4 であるものが 1×1×4×3 個。
で、合計は 3×5×4×3 + 1×1×4×3 + 1×1×4×3 = 204 個。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報