ギリギリ行けるお一人様のライン

直線の1次元で、原点0から距離がLだけ進んだら原点0になるような世界があるとします。2次元まで広げると「平坦トーラス」になっていて、それの一方向にしか動かないので一次元です。局所的には距離が1増えたら位置も1増えます。

このような世界で、位置xから距離Dだけ進んだら、位置は何になるかを表すのにいい方法はありますか。できればガウス記号を使わない方法はありますか。

あったら教えてください。

A 回答 (3件)

L arg( e^(2πi(x+D)/L) )/2π とか?

    • good
    • 0

え"〜


(x+D) - [ (x+D)/L ] L じゃないの〜
非整数の mod は、あまり標準的な記法じゃあないよ。
    • good
    • 0

x+DをLで割ったあまり



mod(x+D,L)
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!


おすすめ情報