円(1) 中心(x1,y1) 半径r1
円(2) 中心(x2,y2) 半径r2
円(3) 中心(x3,y3) 半径r3
上記の3円に接する円の中心点と半径の求め方を教えてください。
宜しくお願いいたします。

このQ&Aに関連する最新のQ&A

A 回答 (4件)

おはようございます。

yacobです。

補足説明の前に、前回の回答に誤りがありましたので、訂正させてください。色々なケースにより解答の数は,0-8通りと書きましたが、"3つの円が1点で接するときは、解答の数は無限" というのがありました。うっかり落としてすみません。

さて、補足にてご質問のApolloniusの作図方法とは、例として3つの円に外接する円の場合を申し上げますと、3つの円の半径r1,r2,r3のうち、最低の半径、例えばr3、を、他の2つの円の半径から減じて、円(1)、円(2)の半径を、r1-r3, r2-r3 として2つの円を書き、、円(3)を、単なる定点 O3 (x3,y3の位置)へと換えて、"3つの円に接する円” を作図することを、 “2つの円に接し、かつ、1つの点を通る円” を作図するように変えることです。
これより、“2つの円に接し、かつ、1つの定点を通る円” の中心、すなわち、"3つの円に接する円” の中心が、図上に求まりますから、あとは、どれか1つの円に接する円を書けばよいことになります。言われてみれば、簡単ですが、思いつくのは容易でないことと思います。
“2つの円に接し、かつ、1つの点を通る円” を、作図する方法も、そう簡単ではありませんが、方冪の定理などを用いで解き、作図します。図がないと詳しく説明できませんが、下記の図書をご参考ください。(勿論、他にもあるでしょうが、私の知っているのは)
岩田至康編 幾何学大辞典第1巻 353頁、352頁
くどくなりましたがお許しください。
    • good
    • 1

式(1) (x0-x1)^2+(y0-y1)^2=(r1+r0)^2


式(2) (x0-x2)^2+(y0-y2)^2=(r2+r0)^2
式(3) (x0-x3)^2+(y0-y3)^2=(r3+r0)^2

式(1)-(2)を考えると、2乗の差の因数分解を用いて
(x2-x1)(2*x0-(x1+x2))+(y2-y1)(2*y0-(y1+y2))=(r1-r2)(2*r0+(r1+r2))
というx0,y0,r0に関する「1次式」ができあがります。
同様に式(2)-(3)を考えて
(x3-x2)(2*x0-(x2+x3))+(y3-y2)(2*y0-(y2+y3))=(r2-r3)(2*r0+(r2+r3))
これら2式より、x0とy0を、r0および定数で表すことができます。
x0=f(r0|x1,x2,x3,y1,y2,y3,r1,r2,r3)
y0=g(r0|x1,x2,x3,y1,y2,y3,r1,r2,r3)
これを(1)にでも代入すればr0に関する2次方程式ができあがります。これを解けばOK。

ちなみに内接の場合を考えるときは、式を組み替えるのではなく、r1とかを負値にすればそのままの式で対応できます。文字のままやるなら。。。

とはいえ、文字のままやるのはかぁなりきつそうですぜ。
    • good
    • 0
この回答へのお礼

お忙しいところありがとうございます。
そういえば昔に「2乗の差の因数分解」をやったような気がします。(完全に記憶から抹消されてますが・・・)
ご回答いただいたところの、「x0=f(r0|x1,x2,x3,y1,y2,y3,r1,r2,r3) 」の「f(r0|x1,x2,x3,y1,y2,y3,r1,r2,r3) 」の意味が解らないのですが教えていただけますでしょうか。

お礼日時:2001/11/21 09:40

平面幾何学では、”3つの円に接する円を作図する” 方法は、永い年月、解が得られなかったものを、Apollonius が解きましたので、”Apollonius の問題” といわれるようです。


私は戦中派で、学生時代に解析幾何学を殆ど勉強しなかったので、良く判りませんが、3元2次の文字方程式の解は、大変に困難であろうと思います。しかし、具体的に図が与えられるなら、Apollonius による方法で作図できます。
また、Kony0さんの言われるとおり、3つの円の位置により、解答は、内接、外接の組み合わせで、0,2,4,6,8通りあるようです。例えば、3つの円が互いに、交差せず、接することもなく、また、そのうちの1つの円が他の円の中にあるときは、解は0。3つの円が互いに、交差せず、接することもなく、どの円も他の円の中にないときは、内接、外接の組み合わせにより、解は8通りになります。
ご質問の答えにはなっていませんが、ご参考までに申し上げます。

この回答への補足

お忙しいところ恐れ入ります。
「Apollonius による方法で作図」について詳しく教えていただきたいのですが。
よろしくお願いいたします。

補足日時:2001/11/21 16:57
    • good
    • 0
この回答へのお礼

お忙しいところどうもありがとうございました。
図で表したいところなんですが、どうやって質問させていただいたらよいのかわかりません。
いろいろ考えてがんばってみます。

お礼日時:2001/11/21 09:32

中心間の距離に注目した式を考えるのがもっとも単純そうです。


すなわち接している2円の中心間の距離が2円の和(外接のとき)もしくは差(内接しているとき)となることを用いて立式します。
未知数3つ(中心&半径)、立式3つなので解けますね。

ちなみに、この問題は外接の場合、内接の場合などいろいろあるので、答えは山盛り出てきそうです。(最高16個もありえる?!ここまではないのかもしれませんが)
    • good
    • 0
この回答へのお礼

どうもありがとうございます。
ただ、立式3つのとき方がわからないのでそちらのほうも教えていただきたいのですが。
求める円(3つの円に外接する円とします) 中心(x0,y0) 半径r0とした場合、
式(1) (x0-x1)^2+(y0-y1)^2=(r1+r0)^2
式(2) (x0-x2)^2+(y0-y2)^2=(r2+r0)^2
式(3) (x0-x3)^2+(y0-y3)^2=(r3+r0)^2
となった場合の x0,y0,r0の求め方が解らないのですが。
基本的な質問で申し訳ございませんが宜しくお願いします。

お礼日時:2001/11/20 18:17

このQ&Aに関連する人気のQ&A

3」に関するQ&A: DDR3L PC3L-12800 とは?

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底,{y1,y2,y3}がその双対基底でx=(0,1,0)の時,y1(x),y

[問] ベクトルx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底とする。
{y1,y2,y3}がその双対基底でx=(0,1,0)の時、
y1(x),y2(x),y3(x)を求めよ。

という問題の解き方をお教え下さい。

双対基底とは
{f;fはF線形空間VからFへの線形写像}
という集合(これをV*と置く)において、
V(dimV=nとする)の一組基底を{v1,v2,…,vn}とすると
fi(vj)=δij(:クロネッカーのデルタ)で定めるV*の部分集合
{f1,f2,…,fn}はV*の基底となる。これを{v1,v2,…,vn}の双対基底と呼ぶ。

まず、
C^3の次元は6(C^3の基底は(1,0,0),(0,1,0),(0,0,1),(i,0,0),(0,i,0),(0,0,i))
だと思うので上記のx1,x2,x3は基底として不足してると思うのです(もう3ベクトル必要?)。

うーん、どのようにしたらいいのでしょうか?

Aベストアンサー

>C^3の次元は6(

これが間違え.
「x1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底」
といってるんだから,係数体はRではなく,C.

あとは定義にしたがって,
dualな基底を書き下せばいいだけ.
y1(x1)=1,y1(x2)=y1(x3)=0であって
v=ax1+bx2+cx2と表わせるわけだし,
v=(v1,v2,v3)とすれば,a,b,cはv1,v2,v3で表現できる
#単なる基底変換の問題.

Q(1)半径rの円x^2+y^2=r^2と直線3x+y+10=0が共有点

(1)半径rの円x^2+y^2=r^2と直線3x+y+10=0が共有点をもつとき、rの値の範囲を求めなさい。
(2)円x^2+y^2=18と直線y=x+mが共有点をもつとき、定数mの値の範囲を求めなさい。
(3)半径rの円x^2+y^2=r^2と直線4x-y+17=0が異なる2点で交わるとき、rの値の範囲を求めなさい。
(4)円x^2+y^2=5と直線y=3x+mが接するとき、定数mの値の範囲を求めなさい。
(5)半径rの円x^2+y^2=r^2と直線x-3y-10=0が共有点を持たないとき、rの値の範囲を求めなさい。

解き方含め教えてください!!
お願いします。

Aベストアンサー

(1)
共有点を持つ、つまり実数解をもつということです。
実数解をもつということは、判別式DがD≧0となればよいのは分かりますね?
さて、何と何が実数解をもつかというと、x^2+y^2=r^2と3x+y+10=0ですね。
3x+y+10=0をy=-3x-10と変形して、これをx^2+y^2=r^2に代入して、xの2次方程式にしてD≧0を計算すればいいわけです。

(2)
同様に考えましょう。
y=x+mをx^2+y^2=18に代入してxの2次方程式にして、D≧0を計算すればmの値の範囲が分かるはずです。

(3)
異なる2点で交わる。つまり重解を持たずに実数解をもつ場合です。このとき判別式DはD>0となります。
他の考え方は一緒です。
4x-y+17=0を変形してx^2+y^2=r^2に代入し、その2次方程式の判別式DをD>0として計算するだけです。

(4)
接するとき、つまり重解をもつ時です。この時判別式DはD=0となります。

(5)
共有点を持たないときは、実数解をもたないときになります。
D<0ということです。


長くなりましたが、判別式の使い方さえ把握していれば全部同じ考え方で解ける基本問題ですね。

(1)
共有点を持つ、つまり実数解をもつということです。
実数解をもつということは、判別式DがD≧0となればよいのは分かりますね?
さて、何と何が実数解をもつかというと、x^2+y^2=r^2と3x+y+10=0ですね。
3x+y+10=0をy=-3x-10と変形して、これをx^2+y^2=r^2に代入して、xの2次方程式にしてD≧0を計算すればいいわけです。

(2)
同様に考えましょう。
y=x+mをx^2+y^2=18に代入してxの2次方程式にして、D≧0を計算すればmの値の範囲が分かるはずです。

(3)
異なる2点で交わる。つまり重解を持たずに実数解をもつ...続きを読む

Qx, y∈Rとするとき、条件「x>y⇒x^2>y^2」が成り立つ点(x, y)の集合を図示せよ。

x^2≦y^2 を(x-y)(x+y) ≦0 と変形する。
x>yの場合より、両辺をx-y>0で割ると
x+y≦0
∴y≦-x
x>y であって, しかも y≦-x であるような点の集合は、
x≦0、つまり,y軸の左側(y軸を含む)では、直線 y=x より上側(この直線も含む)
x>0、つまりy軸の右側では直線 y=-x より上側(この直線は含まず)

いつもお世話になります。
上記のように解いたのですが、説明不足でしょうか?
不自然な点、補足した方がよい点をご教授下さい。

Aベストアンサー

まず方針を書くべき。
でないと
>x^2≦y^2 を(x-y)(x+y) ≦0 と変形する。
が意味不明。

'x>y であって, しかも y≦-x であるような点の集合は、'

'x>y かつy≦-x であるような点の集合をxy座標から除くと、'
とすれば次の行で述べられた領域につながる。
つまり日本語が不自然。

Q≪問題≫実数x,y,zは関係式,x+y=2…(1),x^3+y^3+z^3

≪問題≫実数x,y,zは関係式,x+y=2…(1),x^3+y^3+z^3=8…(2)を満たす。
(1)x^2+y^2+z^2をzを用いて表せ。

(x+y+z)(x^2+y^2+z^2-xy-yz-zx)-3xyz=x^3^+y^3+z^3
の関係式を使ってみようかな。。。
って思ったんですが…できません^^;

どなたかよろしくお願いします。

Aベストアンサー

x^2+y^2+z^2をzで表すのだからx^2+y^2の部分が問題です。
x^2+y^2はx+yとxyで表せますね。
だから目標はxyをzで表すことです。

(1)が使えるように(2)を変形してみる。
(x+y)^3-3xy(x+y)+z^3=8
(1)を代入してみる。
2^3-3xy*2+z^3=8
xy=z^3/6
となった。

Q関数f(x1,x2,x3,x4,x5)が最大値となるようなx1,x2,x3,x4,x5の求め方

変数を5つもつ関数f(x1,x2,x3,x4,x5)があります。
関数f(x1,x2,x3,x4,x5)は、一言では言い表せないような複雑な式とします。

y=f(x1,x2,x3,x4,x5)としたとき、
yが最大になるようなx1,x2,x3,x4,x5はどのようにして求めればよいでしょうか?

例えば、、、

(1) x2,x3,x4,x5を適当な値に固定し、x1を変化させてyが最大となるようなx1を求める。(このときのx1をaとする)

(2) x1をaに、x3,x4,x5を適当な値に固定し、x2を変化させてyが最大となるようなx2を求める。(このときのx2をbとする)

(3) x1をaに、x2をbに、x4,x5を適当な値に固定し、x3を変化させてyが最大となるようなx3を求める。(このときのx3をcとする)

(4) x1をaに、x2をbに、x3をcに、x5を適当な値に固定し、x4を変化させてyが最大となるようなx4を求める。(このときのx4をdとする)

(5) x1をaに、x2をbに、x3をcに、x4をdに固定し、x5を変化させてyが最大となるようなx5を求める。(このときのx5をeとする)

このとき、f(a,b,c,d,e)は最大値??
多分、違いますよね。

変数を5つもつ関数f(x1,x2,x3,x4,x5)があります。
関数f(x1,x2,x3,x4,x5)は、一言では言い表せないような複雑な式とします。

y=f(x1,x2,x3,x4,x5)としたとき、
yが最大になるようなx1,x2,x3,x4,x5はどのようにして求めればよいでしょうか?

例えば、、、

(1) x2,x3,x4,x5を適当な値に固定し、x1を変化させてyが最大となるようなx1を求める。(このときのx1をaとする)

(2) x1をaに、x3,x4,x5を適当な値に固定し、x2を変化させてyが最大となるようなx2を求める。(このときのx2をbとする)

(3) x1...続きを読む

Aベストアンサー

まず最初に、この「一言では言い表せないような複雑な」関数が「連続」である必要があります。不連続の場合は初期値(「x2,x3,x4,x5を適当な値に固定し」に相当)から最大値に至る探索の道筋の手がかりがなにも無い事になってしまいますから。

次に、この方法で最大値が求まるためは、2次元で考えたとして山の頂上(y の最大値に相当)がパラメータx1,x2,x3,x4,x5の値域内でひとつだけである必要があります。山で例えると富士山(頂上の火口付近のくぼみは無視して)のような山です。そうでない場合、つまり、例えば八ヶ岳のように複数の頂上があった場合、見つかった値は最大値とは限りません。つまり八ヶ岳のひとつの頂上が見つかっただかで、これが八ヶ岳で一番高い頂上かどうかは分からないということです。こうして見つかった y の値を「局所最大値」と呼びます。確実に(局所でない大局的な)最大値を見つける方法は見つかっていません。

質問者さんの方法でも(局所)最大値は見つかりますが、多くの場合、x1~x5 をそれぞれ少しだけ値を振って(Δx)、その時の y の変化が大きい方に、より動いていく、というやり方をします。例えて言えば、山登りで霧がたち込めていて頂上が見えない場合、足下の周辺の地面だけを見て、最も傾斜が急な方向に次の一歩を踏み出す(次の x1~x5 を決める)わけです。この方法は No.1 さんのおっしゃるように「山登り法」と呼ばれており、質問者さんの方法より速く(少ない歩数で)(局所)最大値に達することができます。

歩幅の大きさにも注意が必要です。頂上や山の大きさに関係するのですが、多くの場合「一言では言い表せないような複雑な」訳で、山の大きさすら分かりません。一歩の大きさを大きくすればそれだけ速く頂上に到達できますが、頂上の正確な位置がでませんし、山よりも大きな歩幅ですと山を飛び越えてしまいますので、「十分に」小さな値にします。計算を速くするために、最初の歩幅は大きく、段々歩幅を小さくするというやり方もあります。

より詳しくは「山登り法」で検索されるといろいろと見つかると思います。

まず最初に、この「一言では言い表せないような複雑な」関数が「連続」である必要があります。不連続の場合は初期値(「x2,x3,x4,x5を適当な値に固定し」に相当)から最大値に至る探索の道筋の手がかりがなにも無い事になってしまいますから。

次に、この方法で最大値が求まるためは、2次元で考えたとして山の頂上(y の最大値に相当)がパラメータx1,x2,x3,x4,x5の値域内でひとつだけである必要があります。山で例えると富士山(頂上の火口付近のくぼみは無視して)のような山です。そうでない場合、つまり、...続きを読む


人気Q&Aランキング

おすすめ情報