環境ホルモンなどで、高分子の可塑剤が取り上げられていますが、高分子の可塑剤というのは、そもそもどうして高分子をやわらかくできるのでしょうか?
高分子同士の会合を切断するのでしょうか?高分子内の結合を妨げるのでしょうか?

また、高分子が柔らかい、というのはどういう場合ですか?
分子量が小さい、炭素-炭素単結合が多い、の他に考えられる要因があれば教えて下さい。

よろしくお願いいたします。

A 回答 (3件)

熱硬化型の接着剤の剛性を小さくするという話ですね。


熱硬化性接着剤といっても何系かが分からないので
一般的な考え方を述べます。
接着強度を低下させる原因の一つに硬化時の収縮による
残留応力の問題があります。当然残留応力が大きいほど
接着強度は低下してしまいます。
同じ収縮量ならば弾性率(剪断方向ならば剛性率)が
高いほど応力は大きくなってしまうので剛性を下げたい
という要望が出てくることが良くあります。
単純に剛性を下げる方法の一つとして液体の可塑剤を
加えるというのも一案ですが、私自身はあまりお奨め
しません。接着強度を支配するのは残留応力だけでは
ないからです。液体成分を加えると一般的に接着強度は
低下するからです。
プラスチックなどで対衝撃性を向上する手段として、
ゴム成分を添加するというのが一般的だと思います。
これは、直鎖のC-Cを増やすということと同じ様な
考えかもしれませんが。
熱硬化性の接着剤の場合、硬化反応によって架橋点が
沢山形成されます。熱可塑性の高分子では分子の絡み合い
(水素結合や結晶による分子の拘束も含めて)の
度合いが剛性を支配する因子になってきますが、
このような絡み合いよりも密に架橋点が生じるので
架橋間の分子量が支配因子になると思います。
架橋間分子量が小さいほど(架橋が密なほど)
剛性率は高くなってしまいます。
架橋点間を離す工夫も必要でしょう。
低分子の材料を使用すると硬化させたときに結局
架橋点間分子量が小さくなってしまうようでは
逆効果です。
もう一つ、何℃での剛性率を問題にするか?
ゴム成分を加えるというのは、使用温度よりもガラス転移温度の
低い材料を加えると言うことなので、接着剤成分のガラス転移温度
も場合によっては考慮が必要だと思います。
    • good
    • 1
この回答へのお礼

なるほど!
何度もご丁寧な解答を頂けて、感動です。
本当にありがとうございます。
熱硬化性高分子と熱可塑性高分子とでは、剛性の影響因子は違うんですね!
確かに、言われてみれば「なるほど」と思ってしまいますが、言われないとわからない盲点でした。
熱硬化性のほうが複雑な系なわけですね。(これも言われてみれば納得ですが)
してみると、熱可塑性のほうが、高分子鎖の絡み合いだけ注目していれば、ある程度制御しやすいというわけですか。
いま私の扱っている現場では長らく、少し特殊な分子量の低めの天然材料(デンプン系)を使っており、それを私は残留応力が少ないために、基材への物理的影響を少なくできるからだろうと解釈していたのです。しかし、現場の方からは、接着剤だけでなく基材をも含めた仕上がり感の「しなやかさ」にこだわっている、との理由を聞きました。(使っている方達は、化学組成には興味なく、ただ、今まで使ってきて上記の効果が得られているので使っているわけですが。)本当のところ、この天然材料はpH調整がしにくく、うちの職場としては代替材料(熱硬化性でも熱可塑性でも)を捜せるものなら探したい、という意向があったので、彼らの言う「しなやかさ」とは何か、また、他に材料を探すとしてそもそも高分子を柔軟にするためにはどうしたらいいか、という観点から考え込んでいました。
結局、熱可塑性高分子の場合、「しなやかさ」と残留応力ひずみは直結しているのですね。現場の方と、私とでは言語が違うだけで同じ要素を見ていたのだということがわかりました。
ご丁寧な解答のおかげで、代替材料探しの糸口が少し見つかったような気がしています。
本当にありがとうございました。

お礼日時:2002/01/19 22:51

まず、固い、柔らかいというのは抽象的な表現ですが


弾性率が大きい、小さいと考えればよいのではないでしょうか。
弾性率とは固体を変形させようと一定の力を加えたときに
大きく変形する物が弾性率が小さくて柔らかい、少ししか
変形しない物が弾性率が大きくて固い。
高分子化合物が低分子化合物と大きく異なる点は分子量が
大きいこと。分子量が大きくて隣の分子と絡み合っていることです。
分子量が小さいと気体で大きくなるにしたがって液体、固体と
変化しますが、これ以上の分子量になると初めて絡み合いが
生じるという分子量が存在するはずです。この分子量のことを
臨界分子量といいますが、臨界分子量以上の分子量になって初めて
高分子らしさが出て来るとも言えるでしょう。
このように高分子化合物は絡み合っています。
密に絡み合っているほど変形させようとしても変形しにくいので
弾性率は大きくなって固くなります。
環境ホルモンの問題となる後添加の可塑剤は液状物質が多く、
これら高分子の絡み合いをほぐすことによって柔らかくする
働きをします。
密に絡み合う高分子か元々あまり絡み合わない高分子なのかは
高分子の構造に依存し、高分子鎖が変形しやすい
(C-C結合が回転しやすい構造)ほど絡みにくく柔らかくなります。
分子内に存在する極性基による高分子間に水素結合や結晶なども
絡み合いと同じように分子を拘束するので、そのような部分が増えても
変形しにくく固くなります。
    • good
    • 0
この回答へのお礼

わかりやすい説明をありがとうございました。
高分子の剛性について考える場合、分子量と物質の状態の関係、C-C結合と物質の状態の関係、以外の要素があるのかな、と悩んでいたので。
接着剤の硬化後の強度について調べていて出てきた疑問でした。
ポリイミドなどの熱伝導性の低いものの剛性は見当がつきやすいのですが、逆に「しなやかな」接着剤の要望があった場合、どういう物性基準で探したらいいのか、というのが出発点でした。(職場は文系的現場と理系の橋渡しをしているようなところです)
でも結局は、可塑剤を入れる、分子量を落とす、直鎖C-Cを増やす、という点で探していくしかないようですね。
・・・もし何かアイディアをお持ちでしたら教えていただけると嬉しいのですが・・・

お礼日時:2002/01/18 10:14

参考URLは可塑剤工業会のホームページの一部


http://www.kasozai.gr.jp/

参考URL:http://www.kasozai.gr.jp/main/index2.htm
    • good
    • 0
この回答へのお礼

ありがとうございます。
さっそく読んでみたところ、可塑剤の仕組みが分かりやすく書いてありますね。高分子の間でどういう形で可塑剤が存在していたのかわからなかったのですが、その点が明解に書いてあって理解できました。

お礼日時:2002/01/18 09:57

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q高分子と低分子の特徴

高分子と低分子の特徴を教えてください。
具体的に言うとそれぞれの長所と短所を教えてください。

Aベストアンサー

一番簡単に言うと、低分子がたくさん集まったものが高分子ということが出来ますが、単に分子量の差だけでは一概に定義できるわけではありません。
ですが、高分子の範疇に入らないものを低分子と考えれば間違いないと思います。

高分子の場合は基本となるユニットがたくさん繋がっているので、いろいろな特性が生まれます。具体的には岡山大学での説明が良いかと思われますのでリンクします。

参考URL:http://www.cc.okayama-u.ac.jp/~zaki/pdfs/lec_intro.pdf

Q吸光度と透過率

 早速質問させていただきたいのですが、吸光度と透過率にはどのような関係があるのでしょうか?ランベルトベールの法則を利用すると言うのはわかるのですが、吸光度は透過度の逆対数であると理解しているのですが、どう関係しているか分かりません。教えてください。

Aベストアンサー

私も時々分らなくなることがあります。苦手のひとつですね。分光計で考える良いと思います。試料溶液と溶媒単独を同じ光源からのそれぞれ通過させ、溶媒単独と通過してきた光の強さ(光電管の電圧)I0 と試料溶液を通過してきた光の強さ(光電管の電圧)Iとして、縦軸に光学密度(吸光度とも称されます)log(I0/I)又は透過率(I/I0)、横軸に波長又は波数のチャートが得られます。それ故、吸光度は透過率の逆数の対数になりますね!

Q樹脂材料の曲げ弾性率について

先日、仕事の関係でプラスチックのスナップフィット
(プラスチック部品の一方と他方がパチンとはまる
爪形状です。プラモデルにもよくあると思います。)
の荷重計算をしようとしました。
その爪形状には大きなテーパがついており、
根元が太く先細だったので、
単純な梁の公式では計算できずに
excelマクロによる数値積分で
梁の曲げ微分方程式(d^2y/dx^2=-M/EI)を
解こうとしました。
-------------------------------------
一応できたので、早速荷重を計算して実測値と
照らし合わせてみようとしたのですが、
材料のヤング率(縦弾性係数)を知らないことに
気づきました。
同僚に聞いてみたところ、「曲げ弾性率」というのは
材料の仕様書に載っていると教えてくれました。
職場にある材料便覧を見ても「曲げ弾性率」は
載っていました。
この「曲げ弾性率」はヤング率(縦弾性係数)と
同じなのでしょうか。それとも違うのでしょうか。
もし違う場合、ヤング率(縦弾性係数)は
どのようにして調べるべきなのでしょうか。
似たような経験がある方がいましたら
お手数ですがご教示願います。

先日、仕事の関係でプラスチックのスナップフィット
(プラスチック部品の一方と他方がパチンとはまる
爪形状です。プラモデルにもよくあると思います。)
の荷重計算をしようとしました。
その爪形状には大きなテーパがついており、
根元が太く先細だったので、
単純な梁の公式では計算できずに
excelマクロによる数値積分で
梁の曲げ微分方程式(d^2y/dx^2=-M/EI)を
解こうとしました。
-------------------------------------
一応できたので、早速荷重を計算して実測値と
照らし合わせてみようとし...続きを読む

Aベストアンサー

結果から言うと,Eに曲げ弾性率を代入しても問題ないと思います.

引張弾性率と曲げ弾性率は測定方法が異なりますので,物性のもつ意味は違います.引張りの場合(丸棒を引っ張るようなケースです),材料内部はすべて引張応力になりますよね.

しかし,曲げの場合(板を曲げるようなケース)では,ふくらんでる面には引張応力,へこんでる面には圧縮応力がかかります.このため,例えば引張弾性率と圧縮弾性率が異なるような材料では,引張弾性率と曲げ弾性率は違ってきます.

また,少し専門的になりますが,曲げのかかる部材には,引張・圧縮応力の他に,せん断応力もかかっています.これらの効果が総合的に寄与してくるため,引張弾性率と曲げ弾性率は,「意味合いとしては」異なる物性値です.

しかし,ごく一般的なプラスチックであれば,引張弾性率と曲げ弾性率はほぼ同じ値になります.
下記などにデータが出ていますが,恐らくほぼ同等か,曲げ弾性率の方が10%程度低い値になっていると思います.
http://www.m-ep.co.jp/mep-j/tech/index.htm
http://www.mrc.co.jp/acrypet/04tech_01.html

カタログデータに曲げ試験が多い理由は,試験が簡単だからです.薄い平板の試験片が使えますからね(チューイングガムのような形状です).それに対し,引張試験では,試験片を「つかむ部分」の加工が難しく,やや複雑な形状になってしまいます.

というわけで,プラスチックの分野では,曲げ弾性率を測定して,これをEとして代用するケースが多いと思います.

ただし,圧縮やせん断弾性率が引張と極端に違う材料・・・たとえば,ガラス繊維で一方向強化したような異方性材料では,曲げ弾性率とヤング率は大きく異なります.

あと,蛇足になりますが・・・
曲げ弾性率=曲げ応力/曲げひずみ
とありますけど,前述の通り,曲げ応力や曲げひずみは一定値ではありませんので注意が必要ですね.材料内部で分布をもっています(ここが引張と違うところ).

通常は,曲げスパンL,破断荷重P,試験片幅b,厚さh,たわみxなどを用いて,
E=(P・L^3)/(4・b・h^3・x)
のような式で求めます.試験方法によっても式が違ってきますので,材料力学の教科書をお読み下さい.

結果から言うと,Eに曲げ弾性率を代入しても問題ないと思います.

引張弾性率と曲げ弾性率は測定方法が異なりますので,物性のもつ意味は違います.引張りの場合(丸棒を引っ張るようなケースです),材料内部はすべて引張応力になりますよね.

しかし,曲げの場合(板を曲げるようなケース)では,ふくらんでる面には引張応力,へこんでる面には圧縮応力がかかります.このため,例えば引張弾性率と圧縮弾性率が異なるような材料では,引張弾性率と曲げ弾性率は違ってきます.

また,少し専門的になりま...続きを読む

Q部分モル体積とは?

初めまして、bababanbanと申します。
物理化学を勉強していると、部分モル量や部分モル体積といった言葉をよく目にします。

部分モル体積とは何なのでしょう?
どういうものなのかいまいちイメージができないため、質問させていただきました。

宜しくお願い致します。

Aベストアンサー

2成分A,Bからなる溶液を考えます。この溶液に成分Aを1モル加えたときの溶液の体積変化をAの部分モル体積といいます。ただし溶液はAを1モル加えても濃度の変化がないくらい多量にあるとします。これを用いると溶液にAをdnAモル、BをdnBモル加えた際の体積変化は以下のようになります。VAはAの部分モル体積です。
dV=VAdnA+VBdnB

Qガラス温度を調整する方法

高分子のガラス転移について質問したいのですが、高分子のガラス温度を上昇させる方法についてどなたかご存知なかた教えてください。ちなみ低下させるには可塑剤を入れると思うのですが、他に良い方法がありましたら教えてください。

Aベストアンサー

ガラス転移温度を上げる目的や対象とする高分子の種類が分かりませんので、一般的なことを記します。

高分子を冷却していくと体積(分子容)は減少していきます。この時、当然ながら質量に変化はないわけですから、体積の減少とは分子鎖の間に存在する自由体積の減少ということになります。

自由体積分率が2.5%にまで減少してしまう温度が、その高分子のガラス転移温度(Tg)なので(Tgが高い高分子は、高い温度で自由体積分率が2.5%となり、Tgの低い高分子は、低い温度で2.5%となるということです。)その高分子よりも沢山の自由体積を持った材料(たとえば、液状物質、可塑剤もその事例)を加えると混合物の自由体積が増加するのでガラス転移温度は低下します。

今回はTgを高めたいわけですから、基本的にはTgの高い(自由体積の少ない)材料を混合したり、共重合すればTgは上昇します。

Tgの高い材料を導入する際に、元の高分子との相溶性も大切です。相溶性が悪いと、元の材料と加えた材料の2ヶ所にTgが現れます。

相溶性が良くなるほど、添加量の影響を受けつつ両者の間の所に混合物のTgが現れます。相溶性がよい場合、混合物のTgを予測する経験式が種々提案されていますので、目安を付けるのには便利です。

数式として最も簡単な式はFOXの式だと思います。

ガラス転移温度を上げる目的や対象とする高分子の種類が分かりませんので、一般的なことを記します。

高分子を冷却していくと体積(分子容)は減少していきます。この時、当然ながら質量に変化はないわけですから、体積の減少とは分子鎖の間に存在する自由体積の減少ということになります。

自由体積分率が2.5%にまで減少してしまう温度が、その高分子のガラス転移温度(Tg)なので(Tgが高い高分子は、高い温度で自由体積分率が2.5%となり、Tgの低い高分子は、低い温度で2.5%となるとい...続きを読む

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q粘度の単位換算について教えてください。

今接着剤の粘度について調べています。
粘度の単位でmPas, cP, cpsとありますが、cpsをmPas, cPへ変換する方法を教えてください。
もしかしてcpsとはcPasのことでしょうか?

Aベストアンサー

MKSとcgs系の記号の区別が紛らわしいのでご注意下さい。

〔MKS(m,kg,s)系の場合〕
圧力の単位:N/(m^2) =Pa(パスカル)
粘度(次元は 圧力×時間)の単位:Pa・s(パスカル秒)

〔cgs(cm,g,s)系の場合〕
圧力の単位:dyn/(cm^2)
粘度の単位:dyn・s/(cm^2) =P(ポアズ)

ここで、m=(10^2)cm、N=(10^5)dyn であることを使うと、
P = 0.1 Pa・s

したがって、
cP(センチポアズ)= 0.01 P = 0.001 Pa・s = mPa・s

cpsはセンチポアズの別表記法と思います(私としては、counts per second の方を連想してしまいますが、、)。

Q融点とガラス転移温度の違い

融点とガラス転移温度の違いが良く理解できません。分かりやすく教えてください。

Aベストアンサー

高分子やってるものです。おそらく質問にでてくる融点は普通いわれている融点ではなく、高分子特有のTmといわれているほうの融点ですよね?
板ガムを考えていただけるとわかりやすいと思います。ガムってそのまんまだと引っ張ってもぶちぶちきれちゃいますよね?でも口の中でかむとひっぱっても伸びるようになります。この引っ張っても伸びる性質に変わる温度が高分子における融点です。次にガムを寒いところもしくは冷凍庫に入れてみてください。常温のガムは折り曲げてもたたまれるだけなのですが、低温におかれたガムを折り曲げようとすると割れてしまうと思います。このぱきぱきの状態になってしまう温度がガラス転移温度です。
食品保存容器とかラップに耐熱温度がかかれていると思いますが、よくみるとなぜか上と下の両方の温度限界がかかれていると思います。上の方の温度限界(融点)になると溶けてしまうのはまあ想像がつくのですが、下の方の温度限界(ガラス転移温度)になるとぱきぱきになって容器が割れてしまうので書かれているのです。

Q「PHR」という単位について

 樹脂の配合などにおいて添加剤の添加量を示すのに「PHR」や「phr」という単位を見かけるのですが、正式にはどういう意味なんでしょうか?

 自分としては「%」のつもりで解釈しているのですが、少し不安になってます。

 何かの略称とは思うのですが、それも判別がつきません。

 よろしくお願いします。

Aベストアンサー

日本語で「重量部」と言います。
樹脂の場合は P= per、H= hundred 、R = resin を表し、ゴムなら最後が R= rubber となります。

主の樹脂やゴムの重量を100として、その他配合、添加する物の重量を数字で表示します。
100分率の%と似ていますが、結果としてはその比率は違いますので、要注意です。

例えば、配合する物の合計が10であれば10÷110=約9%となりますが、仮に副樹脂を40として、
その他を代えなければ、10÷(100+40+10)=約6.6%となり、場合によっては、
大きく性質が変わる可能性があります。

Q粘度法による分子量測定について

粘度から分子量を求めることが出来る理由または原理が分かりません。どなたか分かる方、力になってもらえたらうれしいです。お願いします。

Aベストアンサー

 大学で使われる教科書には必ず乗っていると思います。高分子の極限粘度と分子量には[極限粘度]=K×[分子量]a乗(K、aはポリマーハンドブックなど一般のポリマーについては文献値があります。)が成り立つからなのですが・・・・。
 
 極限粘度とは数個の濃度の違う高分子溶液の粘度を求めて、これを0に補外した濃度0の点の高分子溶液の粘度です(これも教科書に書かれています。補外の仕方にはいろいろありますが、近似式が直線だとした場合は切片です。)濃度0の時の高分子溶液の粘度??と思われるかも知れませんが、溶媒自体の粘度じゃないのと思われるかも知れませんが、大量の溶媒の中に高分子1分子のみがぽっつ~んといる状態をイメージしてください。このときの溶液の粘度が極限粘度です。
 
 ここからが高分子の特徴的なところだと思います。低分子の場合、1分子のみ溶媒の中にいても粘度はかわらないのですが、高分子は鎖がゆらゆらしており、その鎖はとても長い。長いために1分子の存在でも溶媒の粘度に影響を与えます。鎖が長いほうが、粘度が高くなりそうなのはイメージしやすいのではないでしょうか?
 とても簡単なイメージですが、上にあげた式は、高分子1分子が溶媒に溶けた時の粘度とその高分子1分子の分子量の関係を示しているとでも考えてもらったらよいのではないでしょうか。

 式は教科書をみればすぐわかると思うので、どちらかというと私が考えている概念を書いてみました。専門家からみれば??のところもあると思いますが参考なったらよいです。

 大学で使われる教科書には必ず乗っていると思います。高分子の極限粘度と分子量には[極限粘度]=K×[分子量]a乗(K、aはポリマーハンドブックなど一般のポリマーについては文献値があります。)が成り立つからなのですが・・・・。
 
 極限粘度とは数個の濃度の違う高分子溶液の粘度を求めて、これを0に補外した濃度0の点の高分子溶液の粘度です(これも教科書に書かれています。補外の仕方にはいろいろありますが、近似式が直線だとした場合は切片です。)濃度0の時の高分子溶液の粘度??と思われるかも...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報