問題
X,Y:標準正規分布N(0,1)を分布にもつ独立な実確率変数とします
このときZ=X/Yの分布は1/π(1+x^2)を密度関数に持つことを示せ

というものなんですが、
これはいわゆるCauchy分布です
Zの分布関数を地道に計算すればいいんですが、
どうもうまくできません。
計算の経過も丁寧に解説してくれる人がいたらどうかお願いします

ただ、公式を適用するとかいうのはなしでお願いします

このQ&Aに関連する最新のQ&A

A 回答 (5件)

 なんだか難しい話をなさってますが、単なる変数変換の問題でしょう?超関数を使わなくても計算できますし、分布関数を微分する必要もないと思います。


 確率変数X,Yの関数であるZ(X,Y)の確率密度を求めるには、
p(X,Y)dXdY = f(Z,U)dZdU
となるように(X,Y)を(Z,U)に写像してやって、
q(Z)=∫f(Z,U)dU (U=-∞~∞)
を計算すれば良い。それだけです。

dXdY = |(∂X/∂Z)(∂Y/∂U)-(∂X/∂U)(∂Y/∂Z)| dZdU
ですから、
U=Y
とおくと(X,Y)と(Z,U)は1対1の写像であり、
dXdY = |Y|dZdU
従って、
f(Z,U)=|Y|p(X,Y)
であり、
q(Z)=∫|Y|p(X,Y) dY (Y=-∞~∞)
の計算です。
P(X,Y)=φ(X)φ(Y), φ(x)=(1/√(2π)) exp(-x^2/2)
だから、
P(X,Y)=exp(-(X^2+Y^2)/2)/(2π)
よって、
q(Z)=(1/(2π))∫|Y| exp(-(1+Z^2)(Y^2)/2) dY (Y=-∞~∞)
=2(1/(2π))∫Y exp(-(1+Z^2)(Y^2)/2) dY (Y=0~∞)
= 1/(π(Z^2+1))
    • good
    • 1
この回答へのお礼

どうも細かいところまできちんと書いてくださってありがとうございました
このやり方だと分布関数の微分についての問題も解決されました

どうもありがとうございました

お礼日時:2002/02/08 17:25

G(z)=∫(-∞~∞)dx・∫(-∞~∞)dy・p(x)・p(y)・h(z-x/y)


のように使われているのはどうしてなのですか?
なんか使われる場所が違うように見えてしかたがないのですが・・
もしよろしければ教えてください:

G(z)=∫∫(x/y<z)dxdy・p(x)・p(y)

G(z)=∫∫(all)dxdy・p(x)・p(y)・h(z-x/y)
は同じに見えませんか?
私には同じに見えますけど
z<x/yならばh(z-x/y)=0でありx/y<zならばh(z-x/y)=1であるから問題ないような気がしますが
hは超関数と見なすことはできますが本来超関数とは違う素直な関数ですよ
考えすぎているような気がしますが

どうも高度な質問で私の能力の範囲を超えているので
大御所のmotsuanさんに登場願おうではありませんか?
motsuanさん後お願いします

この回答への補足

どうも話が関係ないとこにいっちゃいそうなので
また違う機会に質問として出したいと思います

いろいろありがとうございました

補足日時:2002/02/08 17:20
    • good
    • 0

No.3の方法を使えば分布関数を求めずに直接密度関数を求めることができる


ただしδ関数とh関数について多少知っていないといけない

Xの密度関数をp(x)とすればYの密度関数はp(y)であり
Zの分布関数G(z)は
G(z)=∫∫(x/y<z)dxdy・p(x)・p(y)
=∫(-∞~∞)dx・∫(-∞~∞)dy・p(x)・p(y)・h(z-x/y)
だからZの密度関数g(z)は
g(z)=(d/dz)・G(z)
=∫∫(all)dxdy・p(x)・p(y)・(d/dz)・h(z-x/y)
=∫(-∞~∞)dx・∫(-∞~∞)dy・p(x)・p(y)・δ(z-x/y)
=∫(-∞~∞)dx・∫(-∞~∞)dy・|y|・p(x)・p(y)・δ(x-y・z)=∫(-∞~∞)dy・|y|・p(y・z)・p(y)
=2・∫(0~∞)dy・y・p(y)・p(z・y)
である

この回答への補足

あまり内容とは関係無くなってしまうのですが
超関数についての質問をしてもいいでしょうか?

h関数っていうのはヘビサイト関数ですよね?
一応超関数についての基礎知識はあります。
h関数の微分がδ関数になることもきちんと証明できます。
ただ理論的なことしかわかってなくて
そういった関数(緩増加超関数)が
実際の積分であらわされたものの意味がよくわかりません。

確か緩増加超関数の定義は
1.急減少関数上の線形写像
2.連続

の2つを満たすことでした
つまり緩増加超関数っていうのは急減少関数に対して複素数をとる写像ですよね?

ではG(z)=
∫(-∞~∞)dx・∫(-∞~∞)dy・p(x)・p(y)・h(z-x/y)
のように使われているのはどうしてなのですか?
なんか使われる場所が違うように見えてしかたがないのですが・・
もしよろしければ教えてください

補足日時:2002/02/07 16:44
    • good
    • 0

Xの密度関数をp(x)とすればYの密度関数はp(y)であり


Zの分布関数G(z)は
G(z)=∫(0~∞)dx・∫(-∞~x・z)dy・p(x)・p(y)
+∫(-∞~0)dx・∫(x・z~∞)dy・p(x)・p(y)
=2・∫(0~∞)dx・∫(-∞~x・z)dy・p(x)・p(y)
Zの密度関数g(z)は
g(z)=(d/dz)・G(z)=2・∫(0~∞)dx・x・p(x)・p(x・z)
である

この回答への補足

早い回答ありがとうございます
G(z)=2・∫(0~∞)dx・∫(-∞~x・z)dy・p(x)・p(y)
まではたどりつけていたんですが、最後は微分するんですね
やはりこの積分は無理なんでしょうか・・
この積分をずっと考えていて、微分はあまり考えていませんでした。

今試しに微分して計算したらちゃんと合ってました!!
これで答えはでました(一応安心です笑)
気になるところは積分と微分の交換ですが
たぶん容易に示せると思います。

それともう1つ気になるのは
密度関数が存在するかということなんですが、
存在するかわからないときに微分してもいいのでしょうか?
まあこれはあんまり興味が無いことなので
これについての回答は気が向いたらで結構です笑

ありがとうございました
それと上の方でもう1つ質問があります
もしよかったら教えてください

補足日時:2002/02/07 16:28
    • good
    • 0

∫(-∞~∞)dx・∫(-∞~∞)dy p(x)・p(y) δ(z-x/y)


を計算すればよいのでは?δはδ関数で束縛条件を表しています。
    • good
    • 0

このQ&Aに関連する人気のQ&A

確率 関数」に関するQ&A: FP3級を独学で

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qエクセルで種類を数える関数が無いのは何故?

エクセルで種類を数える関数が無いのは何故なんでしょうか?

エクセルで種類を数えるには、いくつかの関数を組み合わせるのが一般的ですよね?
直接数える関数が無いのは、訳があるんでしょうか?

Aベストアンサー

>>エクセルで種類を数える関数が無いのは何故なんでしょうか?

やっぱり、そういう関数が必要な方が全体からみたら少数派だと、エクセルの開発者たちが考えているからではないかと思います。
また、既存の関数を組み合わせたら、対処可能だから、無理して新しい関数を作る必要性もない、開発の優先順位が低いって判断もあるでしょうね。

私は、エクセルの表を作ったり、エクセルVBAでプログラムを作ったりしますけど、そういう関数が必要になったことが全くありませんし。

Qx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底,{y1,y2,y3}がその双対基底でx=(0,1,0)の時,y1(x),y

[問] ベクトルx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底とする。
{y1,y2,y3}がその双対基底でx=(0,1,0)の時、
y1(x),y2(x),y3(x)を求めよ。

という問題の解き方をお教え下さい。

双対基底とは
{f;fはF線形空間VからFへの線形写像}
という集合(これをV*と置く)において、
V(dimV=nとする)の一組基底を{v1,v2,…,vn}とすると
fi(vj)=δij(:クロネッカーのデルタ)で定めるV*の部分集合
{f1,f2,…,fn}はV*の基底となる。これを{v1,v2,…,vn}の双対基底と呼ぶ。

まず、
C^3の次元は6(C^3の基底は(1,0,0),(0,1,0),(0,0,1),(i,0,0),(0,i,0),(0,0,i))
だと思うので上記のx1,x2,x3は基底として不足してると思うのです(もう3ベクトル必要?)。

うーん、どのようにしたらいいのでしょうか?

Aベストアンサー

>C^3の次元は6(

これが間違え.
「x1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底」
といってるんだから,係数体はRではなく,C.

あとは定義にしたがって,
dualな基底を書き下せばいいだけ.
y1(x1)=1,y1(x2)=y1(x3)=0であって
v=ax1+bx2+cx2と表わせるわけだし,
v=(v1,v2,v3)とすれば,a,b,cはv1,v2,v3で表現できる
#単なる基底変換の問題.

Qエクセルの関数で

エクセルの関数辞典を見ていたら、CUMPRINC関数というのがありました。
しかし、エクセルの「挿入」→「関数」→関数の分類で「財務」というのを選択したのですが、一覧表に載っていません。
どこに載っているのでしょうか?
どうすればこの関数を使えますか?
ちなみにシートの上でやっても関数の反応をしませんでした。

Aベストアンサー

Yahooで検索してみると、参考URLが引っかかりました。

参考になりませんか?

参考URL:http://money-sense.net/doc/20041215_224257.php

Q≪問題≫実数x,y,zは関係式,x+y=2…(1),x^3+y^3+z^3

≪問題≫実数x,y,zは関係式,x+y=2…(1),x^3+y^3+z^3=8…(2)を満たす。
(1)x^2+y^2+z^2をzを用いて表せ。

(x+y+z)(x^2+y^2+z^2-xy-yz-zx)-3xyz=x^3^+y^3+z^3
の関係式を使ってみようかな。。。
って思ったんですが…できません^^;

どなたかよろしくお願いします。

Aベストアンサー

x^2+y^2+z^2をzで表すのだからx^2+y^2の部分が問題です。
x^2+y^2はx+yとxyで表せますね。
だから目標はxyをzで表すことです。

(1)が使えるように(2)を変形してみる。
(x+y)^3-3xy(x+y)+z^3=8
(1)を代入してみる。
2^3-3xy*2+z^3=8
xy=z^3/6
となった。

Qエクセルの関数 ネスト

エクセルの関数 ネスト

エクセルの関数で、ネストさせるときがあるとおもうのですが、

関数を内側に書いたらよいのか外側に書いたらよいのか分からなくなる時があります。

エクセルの関数に関してわかりやすく書いてあるページなどありますか。

Aベストアンサー

こんばんは

Excel2003までは、ネストが7まで、2007では64までが可能です。
http://www.google.co.jp/search?hl=ja&source=hp&q=excel+%E3%83%8D%E3%82%B9%E3%83%88%E3%80%802003%E3%80%802007&aq=f&aqi=&aql=&oq=&gs_rfai=

「仕様上は可能」でも、複雑なネストは間違いが生じやすいですし、変更もしにくくなります。「出来るだけネストはしない」「適宜、中間結果をセルに出力する」という方法を採った方が、間違いが少なく、柔軟性のあるシステムになると思います。

>エクセルの関数に関してわかりやすく書いてあるページなどありますか。
関数の個別の機能ならば、Webサイトも書籍も多数あるのですが、「組み合わせて使う」というのはその場その場での発想になってしまうと思います。

Qx+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。

クリックありがとうございます(∩´∀`)∩

 ★x+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。

この問題について説明をお願いします。

Aベストアンサー

おおざっぱな説明になりますが、左の式を
z=-x-y
として、それを右の式のzに代入します。
それを展開してまとめると
x^2-2xy+y^2=0
という式になります。
あとはこれを因数分解すれば
(x-y)^2=0
となるので、x=yという答えがでます。
与えられた条件がほかになければこれでいいはずです。

Qエクセル関数の解読サイトなんてありますか?

エクセル関数の解読サイトなんてありますか?

いつもお世話になっております<(_ _)>

エクセルファイルに関数の入った数式が入力されています。
セルごとに複数の関数が入っていますが、私にはちっともわかりません。

そこで質問です。
こんなとき「エクセル関数を解読」してくれるようなサイトってありませんか?

たとえば検索窓があってそこに「=SUM(S1:S13)」わからなくて困っている関数式を入力。
すると答えの別ボックスに「S1~S13までの数値の合計」と出てくるようなサイト。

それに近いサイトでも良いので知っている方がいらっしゃればぜひ、教えてください<(_ _)>

Aベストアンサー

もし、

=IF(E14="","",IF(O14="",(IF(E14>"18:00"*1,"18:00",E14)-IF(C14<="8:00"*1,"8:00",C14))*24*1300,(IF(E14>"18:00"*1,"18:00",E14)-IF(C14<="8:00"*1,"8:00",C14))*24*1625))

だったら、どういう文章が出て欲しいのでしょうか?

もしE14が空白だったら、
 空白、
そうじゃなかったから、
 もしO14が空白だったら、
  (もしE14が18:00より大きかったら18:00、そうじゃなかったらE14)-(もしC14が8:00以下だったら8:00、そうじゃなかったらC14)×24×1300
 そうじゃなかったら、
  (もしE14が18:00より大きかったら18:00、そうじゃなかったらE14)-(もしC14が8:00以下だったら8:00、そうじゃなかったらC14)×24×1625

って感じですか?
数式をそのまま読解したほうが解りやすくないですか?

Qy,z∈V'(Vの線形写像全体の集合)[x,y]=0→[x,z]=0は∃α∋z=αyを意味する事を示せ。

おはようございます。

[Q] Prove the following statement:
Let y,z∈V'(set of all linear functionals on V) [x,y]=0→[x,z]=0 implies that ∃α∋z=αy.

という問題に悪戦苦闘しています。
linear functionalは線形汎写像(終集合がRやCの線形写像)の意味。

この問題はつまり、
"y(x)=0⇒z(x)=0"が成立するならば
線形写像z:V→R(or C) はαyという写像(zはyのスカラー倍になっているような線形写像)。
つまり、
V∋∀x→z(x):=α(y(x))という写像
である事を示せ。
という意味だと解釈しています(勘違いしておりましたらご指摘ください)。
その場合,どのように証明すればよいのでしょうか?

Aベストアンサー

#1です。
>>V≠Ker(y)の時はα:=z(x_0)/y(x_0)と採れば
∀x∈Vに対し、
x∈Ker(y)ならz(x)=0且つy(x)=αz(x)=α・0 (∵仮定) =0となるのでy=zでOK。
x∈V\Ker(y)ならz(x)=(z(x_0)/y(x_0))y(x)=???=y(x)
何故か
z(x)=y(x)が言えません。

z=yではなくz=αyとしてるので問題は無いように思いますが。

Qエクセル関数を、書き写して分析できるツールはある?

タイトルの件、質問します。

エクセルの関数を分析する際に、エクセルの数式バーや、セルに入っている関数を
F2を教えて見るのでは、見にくい場合があります。

現在は、私は、メモ帳に関数をコピーして、分析したり、修正したりしています。
エクセルの機能or他ソフトで、関数を分析できるツールはあるのでしょうか??

【エクセルバージョン】
2003、2007

Aベストアンサー

難解な数式を理解したいとき,最も便利に利用できるのは,2003ではツールメニューのワークシート分析にある「数式の検証」です。
2007では数式タブにあります。

メンドクサイ数式のセルで数式の検証を使い,どの関数やどのカッコから計算が進んでいくのかを1ステップずつトレースして理解します。また意図しない結果がどの段階で発生しているのか追跡します。

このやり方は勿論間違った数式(意図しない結果が出てきた場合)を追跡するのにも使いますが,むしろ誰かに教わった「正しい数式」を理解する時に便利な方法です。
そもそも計算が通っていない(たとえばカッコの対応が間違えていて,Enterしても受け付けてくれないようなミスをしている場合)には使えません。



また,数式バーの中で数式の「中」にカーソルを入れて左右の矢印キーでカーソルを動かしていったときに,「(」や「)」をまたいだ瞬間に,対応する「閉じカッコ」「始まりのカッコ」が色つきで強調表示されるのを確認しながら,カッコの対応がまちがえてないかなどを調べるのも簡易な良い方法です。


あまり使わない方法ですが,数式の中で適宜ALT+Enterを打って「セル内改行」してしまい,数式を縦に分解して書いてみるのも整理しやすい方法のひとつです。

難解な数式を理解したいとき,最も便利に利用できるのは,2003ではツールメニューのワークシート分析にある「数式の検証」です。
2007では数式タブにあります。

メンドクサイ数式のセルで数式の検証を使い,どの関数やどのカッコから計算が進んでいくのかを1ステップずつトレースして理解します。また意図しない結果がどの段階で発生しているのか追跡します。

このやり方は勿論間違った数式(意図しない結果が出てきた場合)を追跡するのにも使いますが,むしろ誰かに教わった「正しい数式」を理解する時に便利...続きを読む

Qx*y=log(e^x+e^y)と定義すると、(x*y)+z=(x+z)*(y+z)

x、y∈Rに対して
x*y=log(e^x+e^y)
と定義すると、
(x*y)+z=(x+z)*(y+z)
が成り立ちます。
分配法則の*と+を逆にしたような感じですが、この*から何かしらの代数的な事実が従うのでしょうか?
この*の意味は何なのでしょうか?

x*x=aのとき、x=√aと定めと、
√(a*b)≧(a+b)/2
といった相加相乗平均の関係の類似は成り立つようですが。

Aベストアンサー

e^x=X, e^y=Y, e^z=Z と置いて考えましょう。
e^(x*y)=e^x+e^y → Z=X+Y
e^(x+y)=e^x*e^y → Z=X*Y
つまり、正の数の加算と乗算になります。

>分配法則の*と+を逆にしたような感じですが

まさにその通りです。入れ替えて見てください。

>√(a*b)≧(a+b)/2

通常の相加相乗平均とは逆ですね。


人気Q&Aランキング

おすすめ情報