出産前後の痔にはご注意!

地球科学の問題なのですが、正方晶系で面心格子がない理由、また立方晶系で底心格子がない理由を教えてください・・・お願いします。

A 回答 (1件)

地球科学の問題と言うよりは結晶学の範疇の問題ですね。

もちろん地球科学で鉱物について扱うと、必然的に結晶学に辿り着くわけですが。

「ブラベー格子」(Bravais lattice)という言葉は聞いたことがありますよね。3次元空間で結晶格子が取りうる構造は14種類しかなく、その14種類の格子を「ブラベー格子」と呼んでいます。分からなければ教科書に立ち返るか、[1]のページなどでしっかり復習して下さい。ブラベー格子を理解していないとこの問題はまったく分からないでしょう。

さて結晶系は三斜晶系、単斜晶系、斜方晶系、正方晶系、立方晶系、菱面体晶系、六方晶系の7つがあり、かつ格子内の配置で単純、面心、体心、底心の4種類が存在します。
単純に組み合わせれば7×4で28種類存在しそうなのですが、上で述べたようにブラベー格子に14種類しかありません。残りの14種類は、他のより単純なブラベー格子(の一つ)に帰着できるからです。

これで答えはほとんど書いてしまったも同然ですが、例として「立方晶系の底心格子」について見てみましょう。

   I●-----●H
   /  /  /| ↑ 
  /-J●--/ | | 
F/  /  /  | |一辺 a 
●-----●G  | |
|   | |   | ↓ 
|  D●-|---●C
|  /  |  /
| /-E●|-/ 一辺 a
|/  / |/
●-----●
A     B
←----→
  一辺 a

とりあえず図は描けます。これを2個つなげてみましょう。

   I●----H●-----●O
   /  /  /| /  /|
  /-J●--/-P●--/ |
F/  /  /  /  /  |
●----G●-----●N  |
|   | |   | |   |
|  D●-|--C●-|---●L
|  /  |  /  |  /
| /-E●|-/-M●|-/
|/  / |/  / |/
●-----●-----●
A     B     K

この図でEBMC-JGPHという角柱を考えてみてください。底面EBMCは正方形で、かつ∠EBG=∠GBM=(∠EBG=)90°です。よってこの構造は「正方晶系の単純格子」に分類できます。

「正方晶系の面心格子」についても同じ要領で考えればよいわけです。こちらはご自分で挑戦してみてください。結果だけ示すと帰着するのは「正方晶系の体心格子」です。

[1] http://ja.wikipedia.org/wiki/%E7%B5%90%E6%99%B6% …

参考URL:http://ja.wikipedia.org/wiki/%E7%B5%90%E6%99%B6% …
    • good
    • 2
この回答へのお礼

詳しく説明してくださりどうもありがとうございました。とても役に立ちました。本当にありがとうございます。

お礼日時:2006/06/25 20:16

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Q底心格子がないわけ

立方晶系には底心格子が存在しない(他の晶系のある格子と同一である)のはなぜかを考えたとき、
斜方晶系でも90度ならば立方と同じだから???など自分で考えても答えがうまく考えられません。
そもそも上の考えはあっていますか?正しい答えを教えて下さい。

Aベストアンサー

プリミティブな立方晶の単位胞を2x2x2位で紙に書いてみてください。

んで、底心の位置に格子点を書いてください。

出来上がった結晶格子をよ~~~く見てください。

単位胞はどんな形をしていますか?
(3次元がイメージしにくかったら、「底」に相当する平面だけで考えてください)
単位胞のとり方は一義的ではない場合もありますが、
・最小の体積になるようにとる のがポイントです。

Qブラベ格子

正方晶系や単斜晶系に面心格子(F格子)がないのはなぜですか?

自分なりに少し考えてみたのですが

正方晶系のF格子は体心格子(I格子)と同じであり、また
単斜晶系のF格子は底心格子(C格子)と同じだからではないだろうか


と思っているのですが、実際そうなのか疑問で・・・(ぜんぜんイメージが出来ません)

だれか教えてください。お願いします。

Aベストアンサー

あっていると思います。体心格子を四つの頂点と体心を含む面で切断し、これを四つくっつけると正方晶系のF格子となります。

Q面心立方と体心立方の逆格子

固体物理の勉強をしています。
体心立方構造の(hkl)面の逆格子点 g*=ha* + kb* + lc*を逆空間で描くと面心立方構造になるらしいのですが、理由がわかりません。
分かる方いましたら、教えてください。お願いします。

Aベストアンサー

単純な計算だけで分かります。
体心立方格子のユニットベクトルは
a1=(-a/2,a/2,a/2), a2=(a/2,-a/2,a/2), a3=(a/2,a/2,-a/2)
です。aは格子定数です。
逆格子ベクトルは b1=2π(a2x a3)/(a1(a2xa3)) などですから、単純に計算すれば
b1=2π/a(0,1,1) , b2=2π/a(1,0,1), b3=2π/a(1,1,0)
となり、これは面心立方格子のユニットベクトルです。

Q六方晶における格子面を(0001)と4桁で

3次元結晶の場合、格子の面や格子ベクトルは
3つの数字の組(001)などで確か全て表せます。

六方晶でも3つの数字の組で表せるのですが、4つの数字の組で表した方が理解しやすいので、この記法が使われることがあります。

4つの数字と3つの数字の関係はどうなりますか?
4つの数字には別の拘束条件がありそうですが、
いかがでしょうか?

このことについて書いてあるwebとか本をご存知ないですか? ちょっと探したけれど見つからなかったので。

よろしくお願いいたします。

Aベストアンサー

六方結晶の場合は(0001)というような表し方ですね。いわゆるc軸が4桁目になります。(h,k,l,m)の場合、h + k = -l の関係があります。

参考URLに出典例を書きましたが、"ミラー指数" "0001"で検索すると、関連ページが56件ありました。

参考URL:http://www.f-denshi.com/000okite/300crstl/304cry.html

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q格子点数と原子数

結晶について学んでおります。
まず、格子点数と原子数の違いが分かりません。

それで、diamondの単位格子の格子点数、原子数を求めようとしたときに、はたと困りました。
まず、diamondのブラベー格子がFである、そのことから、理解ができませんでした。
diamondは、fccを1/4,1/4,1/4ずらしたものの組み合わせだということは知っています。そこからdiamondのブラベー格子がFであるとなるのでしょうか。

ごめんなさい。。書いてて混乱してきました。。意味がとれない部分もあると思いますが、教えてください。

Aベストアンサー

まず結晶格子とは、空間の三方向に等間隔で並んだ点の集まりのことです。
そしてどんな複雑な結晶構造でも、「結晶格子×単位構造」からできています。
このことを少しずつ説明してみたいと思います。

単純立方格子(primitive cubic; cP)は一番わかりやすいと思いますが、ジャングルジムのように
立方体をたくさん詰め込んだような形をしています。ただし、格子とはあくまでも立方体の頂点の
部分だけの集合なので、フレームの部分は含みません。この頂点一つ一つのことを格子点と言います。
8個の格子点を結んでできる、対面が平行な六面体のことを単位胞または単位格子といいます。
単位胞は繰り返しのユニットとなります。先ほど格子はフレームを含まないと言いましたが、
それはこの結び方(単位胞の決め方)が自由であるということです。星座みたいなものだと思って下さい。
べつに菱餅のような形に結んでもいいんですが、ふつうはもっとわかりやすい(対称性の高い)立方体
などの形になるように結びます。

「単純立方格子の単位胞(立方体)にはいくつの格子点が含まれるか」という問題には
1と答えます。なぜ8ではないかというと、立方体の頂点に全て格子点があると考えると、
繰り返し並べた時に別々の立方体から来た8個の格子点が一カ所にかぶってしまうからです。
ですからそれぞれの立方体について8つの頂点のうちたとえば左下手前のものだけをその立方体に
所属する格子点と考えれば1になるわけです。そこを原点O(0,0,0)にとります。

単純立方格子をとる結晶構造のうちもっともシンプルなのは単純立方構造(simple cubic; sc)です。
これは単位胞の頂点の位置だけに一種類の原子を置いた構造で、ポロニウムのα相がこの構造です。
「格子」と「構造」はどう違うのかと思われるかもしれませんね。実際には同一視されている解説が
ほとんどですが、格子はまだ原子(やイオン)を置く前の、単なる位置の基準点の集合です。
単位胞の中に原子を置いて初めて構造になります。これが「結晶格子×単位構造=結晶構造」の意味です。
scの場合は「単純立方構造の単位胞にはいくつの原子が含まれるか」の答も1となります。

他には塩化セシウム型構造が単純立方格子です。これはセシウムイオン(Cs+)を単純立方格子の
原点(0,0,0)に置いたとき、塩化物イオン(Cl-)が立方体の中央(1/2,1/2,1/2)にくる構造です。
Cs+(0,0,0)とCl-(1/2,1/2,1/2)のペアが単位構造であり、それが各単位胞の中にあるということです。
別の見方をすればCs+だけでできた単純立方構造とCl-だけでできた単純立方構造を(1/2,1/2,1/2)だけ
ずらして重ねたと考えることもできます。しかし、あくまでも塩化セシウム構造としての単位胞は
どちらか片方だけですから、単位胞内の格子点数は1のままで原子数は2となります。

やっとダイアモンド構造に近づいてきました。ダイアモンド格子は面心立方格子(cF)をとります。
単純立方格子と比べると立方体の中にあらかじめ
 O(0,0,0)、A(0,1/2,1/2)、B(1/2,0,1/2)、C(1/2,1/2,0)
の4か所に格子点があります。他の点、たとえば(1/2,1/2,1)の格子点はひとつとなりの立方体
に所属するものと考えます。あらかじめ格子点が4つあるというのはどういう事かと言うと、
うまく単位胞を選ぶと立方体の1/4の体積のものが作れて、その中の格子点数は1になります。
このような単位胞は基本単位胞といい、たとえばOA、OB、OCを三辺とする菱形六面体がそのひとつ
です。しかしそれでは形が分かりにくいのでふつうは体積4倍の立方体の単位胞を考える代わりに
格子点数が4になっているのです。

面心立方構造(fcc)は面心立方格子の格子点にだけ原子を置いたもので、単位胞内の
格子点数は4、原子数も4です。一方、ダイヤモンド構造は炭素原子を
O(0,0,0)、O'(1/4,1/4,1/4)
A(0,1/2,1/2)、A'(1/4,3/4,3/4)
B(1/2,0,1/2)、B'(3/4,1/4,3/4)
C(1/2,1/2,0)、C'(3/4,3/4,1/4)
の8カ所に置いた構造です。これは原点に付随する(0,0,0)(1/4,1/4,1/4)の2つの炭素原子を
単位構造として、A、B、Cの3格子点にもコピーしたものと考えることができます。fccを
(1/4,1/4,1/4)だけ平行移動して重ねたものと捉えても構いませんが、ダイヤモンド構造として
の単位胞はあくまでも(0,0,0)を原点とするものだけですから、格子点数4、原子数8となります。

以上長くなってしまいましたがわからなければまたおっしゃって下さい。

まず結晶格子とは、空間の三方向に等間隔で並んだ点の集まりのことです。
そしてどんな複雑な結晶構造でも、「結晶格子×単位構造」からできています。
このことを少しずつ説明してみたいと思います。

単純立方格子(primitive cubic; cP)は一番わかりやすいと思いますが、ジャングルジムのように
立方体をたくさん詰め込んだような形をしています。ただし、格子とはあくまでも立方体の頂点の
部分だけの集合なので、フレームの部分は含みません。この頂点一つ一つのことを格子点と言います。
8個の格子点を...続きを読む

Q六方最密格子の充填率の求め方

六方最密格子の充填率の求め方が分りません。今分っているのは面心立方格子と同じ0.74となることくらいです。
立方格子の場合は、原子を半径rの球体と考えて立方体の体積をrの式で求め、立方体内に含まれる原子の体積を求め、充填率を出しました。
六方の場合は…、同じようにやれると思うのですが、六角柱の体積をどう求めたらいいのか分りませんし、原子も一つがどれだけ立体内にあるのかも想像しにくいです。
解き方分る方ご教授願います。

Aベストアンサー

下記URLを参照ください.

参考URL:http://ja.wikipedia.org/wiki/%E5%85%AD%E6%96%B9%E6%9C%80%E5%AF%86%E5%85%85%E5%A1%AB%E6%A7%8B%E9%80%A0

Qブリュアンゾーンの物理的な意味

 ブリュアンゾーンは、逆格子空間のウィグナーサイツセルとして定義されますが、物理的にはどんな意味があるのでしょうか。いまいち具体的なイメージがわきません。キッテルを使って勉強しているのですが、回りくどくてよくわかりません。
 さらに、フォノンの波数ベクトルが-π<Ka<-πに限定されると、なぜそこがブリュアンゾーンに対応しているのでしょうか。
 数式はキッテルに載っているので、できるだけ物理的な意味やイメージをお教えいただければと思います。よろしくお願いします。

Aベストアンサー

○ブリユアンゾーンがなぜ波数なのか?

#1で述べた通り、そもそも逆格子空間とは、波数空間なのです。ですから、その一部であるブリユアンゾーンも当然波数ですよね。

○なぜウィグナーサイツセルがブリルアンゾーンになるのか?

例えば、いきなり三次元で考えると難しいので、二次元(x-y平面)の正方格子で考えます。基本格子ベクトルa1,a2から実際に基本逆格子ベクトルb1,b2を計算してみてください。y軸方向のベクトルと、x軸方向のベクトルになったと思います。
基本逆格子ベクトルb1とb2を線形結合をとることにより、一般の逆格子ベクトルGが得られますが、ゼロベクトルを別とすれば、逆格子ベクトルGの中で大きさが最も小さいのは、b1,b2含めて全部で4つですよね。この4つのベクトルを原点から書いてみて下さい。
で、結論から言いますと、これらのベクトルの垂直二等分線で囲まれた領域(四角形)がブリユアンゾーンとなるわけですが、それは何故かを考えます。
いま、
(1)このような四角形を逆格子ベクトルだけ移動させて張り合わせていくと、全平面を埋め尽くすことができますよね。また、
(2)四角形の内側の点から逆格子ベクトルだけ離れた点はすべて四角形の外側にあることになります。(つまり、ブロッホ波の波数kの周期的な任意性による重複がこの四角形の中にないってこと。)
ブロッホ波の波数kの任意性の周期は基本逆格子ベクトルですから・・・・もうこの四角形の内部の点だけを考慮すればいいことになりますよね!だから、こうやって定義された四角形はブリユアンゾーンとなるわけです。

この考え方が他の構造にも適用できます。

○ブリユアンゾーンがなぜ波数なのか?

#1で述べた通り、そもそも逆格子空間とは、波数空間なのです。ですから、その一部であるブリユアンゾーンも当然波数ですよね。

○なぜウィグナーサイツセルがブリルアンゾーンになるのか?

例えば、いきなり三次元で考えると難しいので、二次元(x-y平面)の正方格子で考えます。基本格子ベクトルa1,a2から実際に基本逆格子ベクトルb1,b2を計算してみてください。y軸方向のベクトルと、x軸方向のベクトルになったと思います。
基本逆格子ベクトルb1とb2を線形...続きを読む

Q格子定数の求め方教えてください!!

こんにちは。
僕は、結晶学を勉強している大学生です。
現在、斜方晶構造の格子定数を算出しようと勉強しているのですが格子定数a, b, cを求める式を作ることができません。ご存知の方教えて教えて下さい。
斜方晶の関係式は以下のようになります。
1/d^2 = h^2/a^2 + k^2/b^2 + l^2/c^2
d, h, k, lの値は既知でa=,b=,c=の式を教えていただきたいです。
また、格子定数を簡単に求められるソフトなどをお知りであれば教えて下さい。
どうかよろしくお願いいたします。

Aベストアンサー

> 格子定数a, b, cを求める式を作ることができません。

これは初等数学の教えるとおり,線形独立な(=異なる面方位の)3つ以上の関係がない限り,どうやっても求まりません。線形独立な式が3つあるなら,三元一次連立方程式を解けばよいだけです。

> 斜方晶の関係式は以下のようになります。

斜方晶だけでなく,正方晶でも立方晶でも成り立ちます。

> 格子定数を簡単に求められるソフト

XRD などのブラッグの回折パターンから格子定数を精密に求めるには,通常,リートベルト解析という計算を行います。RIETAN というソフトが有名です。ただ,大雑把で良くて,点群が分かっていて面指数まで分かっているなら,電卓で十分計算できると思います。


人気Q&Aランキング