これからの季節に親子でハイキング! >>

材料試験をする際に、3点曲げ試験よりも4点曲げ試験の方が好ましいのはどうしてですか?

A 回答 (2件)

四点曲げは、先の方が云われるように、CD間で F=0、M=一定 です。



A   ↓   ↓  B
――――――――
↑   C   D  ↑

┌―-┐
| + |  S.F.D.
――――――――
       | - |
       └--┘
  ___
  /     \
/    +    \
 ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄
B.M.D.
    • good
    • 1
この回答へのお礼

とても分かりやすい図でためになりました。
丁寧な回答ありがとうございます。

お礼日時:2007/10/13 20:39

4点曲げの場合は、曲げモーメントが最大となる二つの荷重の間は剪断力が0で、純曲げの状態が実現できていますが、3点曲げの場合はどこにも剪断力が0の点がなく、純曲げの状態とはならないために曲げによる挙動を再現できないからです。

    • good
    • 0
この回答へのお礼

とても早い回答ありがとうございました。
丁寧な説明で、理解することができてとても助かりました。

お礼日時:2007/10/13 20:37

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q曲げ応力算出式の導き方

アスファルト舗装材の曲げ試験(舗装試験法便覧)において、
破断曲げ強度σ=3LP/2bh^2 破断ひずみε=6hd/L^2 L:支点間距離、P:荷重、b:供試体の幅、h:供試体の厚さ、d:たわみ と定義されています。
また、JIS K 7203 硬質プラスチックの曲げ試験方法においても、曲げ強さとして同じ式が定義されています。
どうしてこれらの式で定義できるのか、式の意味が分かりません。
また、これらの式をゴム系の材料に適用しても良いものでしょうか?
一応材料力学の本も読んでみましたがこれらの式を導く事が出来ませんでした。どなたか教えていただけませんでしょうか?宜しくお願いします。

Aベストアンサー

単純梁の中央に集中荷重(P)が作用したときの中央点の曲げモーメントは,
M=PL/4
長方形の断面係数は,
Z=bh^2/6
曲げ強度は,
σ=M/Z=(PL/4)/(bh^2/6)=3PL/2bh^2 ・・・(1)

中央点のたわみは,
d=PL^3/48EI
E=の形にして,
E=PL^3/48dI
ここで,Iは断面2次モーメントなので,
I=bh^3/12
を代入して
E=PL^3/48d(bh^3/12)=PL^3/4dbh^3 ・・・(2)

ここで,フックの法則よりひずみは,
ε=σ/E
なので,(1)と(2)を代入して,
ε=(3PL/2bh^2)/(PL^3/4dbh^3)=6hd/L^2

です。 

Q曲げ弾性率について

材料の通常の曲げ試験3点曲げと4点曲げ試験において求めた荷重-たわみ曲線を用いて計算される弾性率で3点曲げ試験では
E=L3F/4bh3Y
(Eは曲げ弾性率、Lは支点間距離、bは試験片の幅、hは試験片の高さFは荷重-たわみ曲線の始めの直線部分の任意に選んだ点の荷重、Yは荷重Fでのたわみ)
単位はMPa又はN/mm2で表すようですが、この式の導き方が、材料化学の本を読んでも見当たりません。
導き方が分かる方教えてください。

Aベストアンサー

単純梁の中央点に1個の集中荷重が作用したときの中央点のたわみの公式は,ご存知でしょうか? 多分,材料力学か構造力学の教科書に載っていると思います。

δ=(PL^3)/(48EI)  ・・・通常はこの式の表示です。
Y=(FL^3)/(48EI)  ・・・質問者さんの記号にあわせる。

この公式(2)に,長方形の断面2次モーメントの算定式
I=bh^3/12
を代入すると
Y=FL^3/(48E(bh^3/12))

E=の形になるように変形すると,
E=FL^3/(4bh^3Y)

となります。

Q曲げ試験について

 曲げ試験のひずみ―荷重、たわみ―荷重の測定値と理論値では必ず一致しないと言うのですが、それは誤差によるものではないとしたら他に何が考えられるでしょうか?教えてください。

Aベストアンサー

chaborinさんのご質問の「理論値」の理論がどの範囲まで考えているか、によってお答えは変わってくると思います。(非弾性挙動や材料の履歴まで含めて精密に材料をモデル化すれば、理論値と測定値のずれは限り無く小さくなるのですから)

ここではchaborinさんの「理論値」が、
(1)試料の変形は、1次元の単純なはり(梁)の曲げで表される
(2)試料を構成する材料は線形(弾性)材料
なる仮定に基づいて、2点で支持して中央に荷重を与えた場合のたわみを計算した数値のことに解釈するとします。

まず(1)ですがそのたわみ量の計算においては通常
(a)断面の形状・寸法は変形によっても変化しない
(b)各断面は変形しても、傾かない
という仮定をおいて解きます。変形量が微小の場合はよいのですが、(a)(b)ともその妥当性が怪しくなってくることはお分かりかと思います。試料の上面は圧縮されるので少し太り、下面は引っ張られて痩せます。
(b)は言葉で読むと分かりにくいかも知れませんが、次のようなことです。
最初に下のように試料の側面に、鉛直な線を引いておきます。荷重をかけない状態では総ての線は平行です。

   荷重
   ↓
□□□□□□□
 ○   ○

これに荷重をかけると全体がしなり、側面に描いた線もすこし斜めに傾きます(試料の左側では右上がり、試料の右側では左上がり)。しかし一番簡単な近似ではこれを無視して解析します。(詳しくは材料力学の教科書の「はりの曲げ」辺りを読んでみて下さい)

さらに上記の解析では必ず「ヤング率」という数字を使うと思います。ご存じかと思いますがヤング率は材料によって決まる数値で、ひずみと応力の間の比例係数です。
この比例の様子を図に表すと下のようになります。

応力

│   *
│  *
│ *
│*
└─────→ひずみ

このようにひずみと応力が完全に比例する材料を「線形材料」や「(完全)弾性材料」などと呼びます。
しかし現実のの材料はひずみ-応力の関係がどこまでも比例するわけではありません。例えば下のように、ひずみが大きくなると応力とひずみが比例しなくなるのが一般的です。


応力

│      *
│   *
│ *
│*
└─────→ひずみ

このような挙動を「非線形挙動」「非弾性挙動」などと呼びます。こうなるともはや、ヤング率を定数と見なせなくなります。従って最初の仮定の(2)も怪しくなってきます。

まとめますと、単純なはり(梁)の曲げで求めた荷重-たわみの理論値は、現実の材料と
(1)はりの断面形状・寸法の変化を無視している
(2)解析の際に、はりの断面の変形に伴う傾きを無視している
(3)解析では材料を線形としているが、実際の材料は非線形の挙動を示す
という点で差異があり、その分が誤差になるということです。

chaborinさんのご質問の「理論値」の理論がどの範囲まで考えているか、によってお答えは変わってくると思います。(非弾性挙動や材料の履歴まで含めて精密に材料をモデル化すれば、理論値と測定値のずれは限り無く小さくなるのですから)

ここではchaborinさんの「理論値」が、
(1)試料の変形は、1次元の単純なはり(梁)の曲げで表される
(2)試料を構成する材料は線形(弾性)材料
なる仮定に基づいて、2点で支持して中央に荷重を与えた場合のたわみを計算した数値のことに解釈するとします。

まず(1)ですがそ...続きを読む

Q4点曲げの弾性率E計算過程

3点曲げの計算方法は以下のように

たわみY=(FL^3)/(48EI)
上の公式に長方形の断面2次モーメントの算定式
I=bh^3/12 を代入し
E=の形になるように変形すると,
E=FL^3/(4bh^3Y)
になりJISk7017の算定式とあうのですが、

4点曲げの計算過程がよくわかりません。

梁の公式たわみYmax=(23FL^3)/(648EI)・・・梁の中央部
とありますので、ここに長方形の断面2次モーメントI=bh^3/12を
代入し、E=の形に変形しても
E=276FL^3/(648bh^3Y)≒0.425FL^3/(bh^3Y)にしかならず、
JISk7017の計算式E≒0.21FL^3/(bh^3Y)と合いません。
わかる方いましたら、ご教授お願いできますでしょうか。

宜しくお願い致します。

Aベストアンサー

たぶん、「梁の公式」は、Fは1か所あたりの値で、
「JIS K7017」は、Fが2か所の力の合計
になっているのでしょう。
     F    F
     ↓    ↓
 △ ̄ ̄ ̄ ̄ ̄ ̄ ̄ ̄△

Q樹脂材料の曲げ弾性率について

先日、仕事の関係でプラスチックのスナップフィット
(プラスチック部品の一方と他方がパチンとはまる
爪形状です。プラモデルにもよくあると思います。)
の荷重計算をしようとしました。
その爪形状には大きなテーパがついており、
根元が太く先細だったので、
単純な梁の公式では計算できずに
excelマクロによる数値積分で
梁の曲げ微分方程式(d^2y/dx^2=-M/EI)を
解こうとしました。
-------------------------------------
一応できたので、早速荷重を計算して実測値と
照らし合わせてみようとしたのですが、
材料のヤング率(縦弾性係数)を知らないことに
気づきました。
同僚に聞いてみたところ、「曲げ弾性率」というのは
材料の仕様書に載っていると教えてくれました。
職場にある材料便覧を見ても「曲げ弾性率」は
載っていました。
この「曲げ弾性率」はヤング率(縦弾性係数)と
同じなのでしょうか。それとも違うのでしょうか。
もし違う場合、ヤング率(縦弾性係数)は
どのようにして調べるべきなのでしょうか。
似たような経験がある方がいましたら
お手数ですがご教示願います。

先日、仕事の関係でプラスチックのスナップフィット
(プラスチック部品の一方と他方がパチンとはまる
爪形状です。プラモデルにもよくあると思います。)
の荷重計算をしようとしました。
その爪形状には大きなテーパがついており、
根元が太く先細だったので、
単純な梁の公式では計算できずに
excelマクロによる数値積分で
梁の曲げ微分方程式(d^2y/dx^2=-M/EI)を
解こうとしました。
-------------------------------------
一応できたので、早速荷重を計算して実測値と
照らし合わせてみようとし...続きを読む

Aベストアンサー

結果から言うと,Eに曲げ弾性率を代入しても問題ないと思います.

引張弾性率と曲げ弾性率は測定方法が異なりますので,物性のもつ意味は違います.引張りの場合(丸棒を引っ張るようなケースです),材料内部はすべて引張応力になりますよね.

しかし,曲げの場合(板を曲げるようなケース)では,ふくらんでる面には引張応力,へこんでる面には圧縮応力がかかります.このため,例えば引張弾性率と圧縮弾性率が異なるような材料では,引張弾性率と曲げ弾性率は違ってきます.

また,少し専門的になりますが,曲げのかかる部材には,引張・圧縮応力の他に,せん断応力もかかっています.これらの効果が総合的に寄与してくるため,引張弾性率と曲げ弾性率は,「意味合いとしては」異なる物性値です.

しかし,ごく一般的なプラスチックであれば,引張弾性率と曲げ弾性率はほぼ同じ値になります.
下記などにデータが出ていますが,恐らくほぼ同等か,曲げ弾性率の方が10%程度低い値になっていると思います.
http://www.m-ep.co.jp/mep-j/tech/index.htm
http://www.mrc.co.jp/acrypet/04tech_01.html

カタログデータに曲げ試験が多い理由は,試験が簡単だからです.薄い平板の試験片が使えますからね(チューイングガムのような形状です).それに対し,引張試験では,試験片を「つかむ部分」の加工が難しく,やや複雑な形状になってしまいます.

というわけで,プラスチックの分野では,曲げ弾性率を測定して,これをEとして代用するケースが多いと思います.

ただし,圧縮やせん断弾性率が引張と極端に違う材料・・・たとえば,ガラス繊維で一方向強化したような異方性材料では,曲げ弾性率とヤング率は大きく異なります.

あと,蛇足になりますが・・・
曲げ弾性率=曲げ応力/曲げひずみ
とありますけど,前述の通り,曲げ応力や曲げひずみは一定値ではありませんので注意が必要ですね.材料内部で分布をもっています(ここが引張と違うところ).

通常は,曲げスパンL,破断荷重P,試験片幅b,厚さh,たわみxなどを用いて,
E=(P・L^3)/(4・b・h^3・x)
のような式で求めます.試験方法によっても式が違ってきますので,材料力学の教科書をお読み下さい.

結果から言うと,Eに曲げ弾性率を代入しても問題ないと思います.

引張弾性率と曲げ弾性率は測定方法が異なりますので,物性のもつ意味は違います.引張りの場合(丸棒を引っ張るようなケースです),材料内部はすべて引張応力になりますよね.

しかし,曲げの場合(板を曲げるようなケース)では,ふくらんでる面には引張応力,へこんでる面には圧縮応力がかかります.このため,例えば引張弾性率と圧縮弾性率が異なるような材料では,引張弾性率と曲げ弾性率は違ってきます.

また,少し専門的になりま...続きを読む

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

Q三点曲げ試験

厚さ7mm、幅10mm、弾性率2GPa、スパン間距離40mmのはりの中央に100Nの負荷をかけて三点曲げ試験を行い、考察として、最大引っ張り応力、最大せん断応力、変位を考えないといけないのですが、いろいろ調べても、これらをもとめる式が見つからず、困っています。
分かる方、どうかお願いいたします。

Aベストアンサー

単純ばりの曲げ変形をモデルにすればよいと思います。
厚さ(t)、幅(b)、スパン間距離(L)、縦弾性係数(E) 荷重(P) とします。断面2次モーメント I=bt^3/12 とすると曲げ剛性は EI です。例えば最大変形(変位)Δは両端の支持点を基準としてΔ=PL^3/(48EI)で得られます。最大引っ張り応力(σ)は、はり中央部の下面で発生します。中央部の曲げモーメントが最大ですから、M=PL/4 ですので、これからσ=Mt/(2I) で与えられます。これらの式の根拠、誘導は「材料力学」の初めの方で出てきます。ご自分で確認なさってください。

Q粘度の単位換算について教えてください。

今接着剤の粘度について調べています。
粘度の単位でmPas, cP, cpsとありますが、cpsをmPas, cPへ変換する方法を教えてください。
もしかしてcpsとはcPasのことでしょうか?

Aベストアンサー

MKSとcgs系の記号の区別が紛らわしいのでご注意下さい。

〔MKS(m,kg,s)系の場合〕
圧力の単位:N/(m^2) =Pa(パスカル)
粘度(次元は 圧力×時間)の単位:Pa・s(パスカル秒)

〔cgs(cm,g,s)系の場合〕
圧力の単位:dyn/(cm^2)
粘度の単位:dyn・s/(cm^2) =P(ポアズ)

ここで、m=(10^2)cm、N=(10^5)dyn であることを使うと、
P = 0.1 Pa・s

したがって、
cP(センチポアズ)= 0.01 P = 0.001 Pa・s = mPa・s

cpsはセンチポアズの別表記法と思います(私としては、counts per second の方を連想してしまいますが、、)。

Q相当応力、相当塑性ひずみについて

SHELL(板)要素の構造解析を行なっております。その解析結果の出力に主応力面についての応力、塑性ひずみがあります。その結果から相当応力、相当塑性ひずみを計算したいのですがよろしくお願いします。
また相当応力、相当塑性ひずみの工学的意味についてもあまりよく分かりませんので分かりやすくお願いいたします。

Aベストアンサー

大学出てからだいぶ時間が経ったので,とんちんかんなこと言ってるかもしれません.

式は,難しいのと,教科書に載ってると思われるので,
書きません.(書けません)

相当応力や相当ひずみというのは,破壊とか強度を論じる
ときに登場するものです.
材料試験をして,その材料がどの程度もつのか調べるわけです.
もしもあなたの注目している現象がその試験と全く同じ条件での材料の破壊や強度を求めたいのなら,その材料試験の値をそのまま適用できます.
しかし,材料はいろいろなかたちに加工され姿を変えて使用されます.荷重のかかりかたもいろいろです.そのため,いわゆる3軸の応力状態となります.6つの面に垂直応力やせん断応力がかかります.これらの応力状態で材料が持つのか持たないのかを議論するときに,その応力状態は,材料試験をしたときの単純な状態(たとえば一軸引っ張りやねじり試験)に換算したらどうなのかをみつけるときに相当応力というのが出てきます.

1軸応力だけなら,100kgf/mm^2もつとしても,
ねじりも同時にかかっていたり,他の2軸にも力がかかっていると単純に材料試験の結果を適用できないわけです.

相当応力は,破壊のメカニズムによりいろいろな式が提案されているので,逆に言えばどのような材料にも適用できる決定打はありません.

ここまで書いたことは,もしかして,違う相当・・・と勘違いしているかもしれません.
その際はご容赦を.

大学出てからだいぶ時間が経ったので,とんちんかんなこと言ってるかもしれません.

式は,難しいのと,教科書に載ってると思われるので,
書きません.(書けません)

相当応力や相当ひずみというのは,破壊とか強度を論じる
ときに登場するものです.
材料試験をして,その材料がどの程度もつのか調べるわけです.
もしもあなたの注目している現象がその試験と全く同じ条件での材料の破壊や強度を求めたいのなら,その材料試験の値をそのまま適用できます.
しかし,材料はいろいろなかたちに加工され...続きを読む

Q強度と剛性の違いは?

単純な質問ですが、強度と剛性って意味合いが違うのか知りたいです。
広辞苑で調べても言葉の意味の違いが分かりません。
同じようなことで、「・・・思う」と「・・・考える」も意味合いが違うんですか?

日本人ですが、日本語難しいです。

Aベストアンサー

No.6です。
>強度=「強さの度合い」、剛性=「外力によって変形しないという強度」ということですか・・・。

 その通りです。ただし、前に書いた通り、「強度」には「何に対して強いか」という点で種々の強度があります。
 一方、「剛性」はこれを高めるために関係する種々の「強度」の組合せで作り出すものといってもいいでしょうか。そして、剛性はただひとつだけのものといっていいでしょう。

>結局「強度」と「剛性」は同じなのですか?。ニュアンスの問題だけになるのですか。

 つまり、「強度」には実にいろいろな種類がありますが、「剛性」とは多くは構造体がこれに加わる外力によって変形しないように、「いろいろな種類の強度を組み合わせて作り出した総合的な強度」といったらいいかと思います。もちろんニュアンスの問題ではありません。
 
 「剛性」とは変形しない強さ.....これは例えば、自動車のボディなどといった構造体に剛性を持たせるには、路面の凹凸などから車輪を通じて伝わってくる振動や強い衝撃、風圧、遠心力や慣性、衝突時の衝撃といった「外力」によって車体がつぶれたり伸びたり、あるいはれじれたり歪んだりしないように(これが剛性)、圧縮強度、引張強度、ねじれ強度、など種々の「強度」をそれぞれ高める必要があります。

 また材料には弾性(バネの性質や弾力)というものがありますが、「外力」によって材料が一時的にバネやゴムボールのように変形することで、構造体全体が一時的に変形しないようにする必要もあります。

 繰り返しますと、こうした「種々の強度」をそれぞれ高めることで「剛性」は高まります。

 しかし、種々ある「強度」の中でも「磨耗強度」だとか「耐環境性」といった「強度」は直接「剛性」には関係ありませんね。ここのところをご理解下さると、ただのニュアンスの違いだけでないことがお分かりいただけると思います。

 とても技術的な話でさぞ難しいことと思いますが、わたしも技術分野の方はともかく、それをご説明する「国語」方が危なっかしいので、その辺はお許し下さい。

No.6です。
>強度=「強さの度合い」、剛性=「外力によって変形しないという強度」ということですか・・・。

 その通りです。ただし、前に書いた通り、「強度」には「何に対して強いか」という点で種々の強度があります。
 一方、「剛性」はこれを高めるために関係する種々の「強度」の組合せで作り出すものといってもいいでしょうか。そして、剛性はただひとつだけのものといっていいでしょう。

>結局「強度」と「剛性」は同じなのですか?。ニュアンスの問題だけになるのですか。

 つまり...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング