1H-NMR(400MHz、溶媒CDCN)でテトラエチルアンモニウム塩を測定したところ、
末端のメチルプロトンがδ=1.2付近でトリプレット・トリプレット
と9個に分かれて検出されました。J値は1.9Hzと7.2Hzです。

測定する以前の予想は単純にトリプレットだと思っていたのですが、
さらに細かくトリプレットに分裂する理由がわかりません。

立体模型を組んでみたところかなり嵩高いことがわかったので、
もしかしたら末端のメチルプロトンが自由回転出来ないために非等価で、
ジェミナルプロトンでスピン結合をしているのではないかと
思うのですが、勉強不足で確信が持てません。

答え、もしくはヒントになるようなこと何でもよいので
どなたかお答えくださるようお願いします。

A 回答 (4件)

NMR を主な武器にしている天然物化学研究者の rei00 です。



実際のチャ-トを見ておらず,化合物も正確にはわかりませんので,可能性だけですが参考になれば幸いです。


【可能な解釈】
テトラエチルアンモニウム・イオンにはメチル基が4つあります。この4つのメチル基が非等価になった場合,メチルシグナルは4種類(つまりトリプレットが4つ)現れます。今の場合,この内の2つが等価なため,低磁場側から1,2(等価な2つ),1の3種のシグナルに出ている可能性はありませんか。

【確認法1:メチレンシグナルのデカップリング】
 メチルのシグナルは1:2:1の3本になるはずです。

【確認法2:昇温測定または低温測定】
 昇温測定では4つのメチルが等価になって1種のトリプレットになるはずです。
 低温測定ではメチル基の非等価性が増大して,ケミカルシフトの差が大きくなるはずです。場合によると,全てのメチルが非等価となって4種のシグナルが現れるかも知れません。

【確認法3:他溶媒での測定】
 上の昇温・低温測定と同じですが,溶媒を変える事でメチル基の非等価性の程度が変わる可能性があります。つまり,メチルが等価になって1種のトリプレットになったり,メチル基の非等価性が増大してケミカルシフトの差が大きくなる可能性があります。

勿論,上記1-3の方法を組み合わせた測定が有効な場合もあると思います。

いかがでしょうか。必要でしたら補足下さい。
    • good
    • 0
この回答へのお礼

回答ありがとうございます。

確認法1と確認法2が今出来ないので、
確認法3をCDCl3(300MHz)で行ってみましたが、
結果はCD3CN(400MHz)の時と同じでした。

また、AldrichのNMRデータライブラリをあたってみた所、
テトラエチルアンモニウム塩のメチルプロトンは
カウンターアニオンによらず今回と類似の
ピーク形を示すことがわかりました。

ところが、これがテトラメチルだったり、
テトラプロピルだと比較的綺麗なトリプレットに成るようです。
つまり、アルキル鎖の炭素数が2(エチル)の時だけ
非等価なプロトンが存在すると言うことなのでしょうか?

お礼日時:2001/05/11 00:22

rei00 です。

レポ-トの提出が出来たとの事,おめでとうございます。

さて,J値の符号の件ですが。「授業では(δ値の差)×(周波数)×10^6と教わったので」とあるのはJ値の絶対値の話です。有機化学などで NMR スペクトルを測定している場合には,J値の大きさは重要ですが,その符号はあまり必要ありません。また,J値の符号を決定する測定は必ずしも簡単ではありません。そのため,通常は絶対値だけを問題にします。

では,J値の符号がどんなときに必要かですが,これは私も専門外ですので正確なところは知りません(別質問として出すと面白いかもしれません)。おそらくは,何らかの理論的に求めた構造が正しいかどうかを議論するような時に必要になるのではないかと思います。

で,その様な記載がある成書ですが,NMR の理論を量子化学的に解説してあるものにのっているような気はしますが,あいにく手元には見当たりません。次の本に簡単な記述がありましたので,参考にしてみてください。

R.J.Abraham/P.Loftus 著,竹内敬人 訳「1H および 13C NMR 概説」(化学同人)
私が持っているのは1979年の第1版ですが,現在は改訂版が出ていると思います。その関係で記述が変わっているようでしたらお許し下さい。
    • good
    • 0
この回答へのお礼

大変お礼が送れて申し訳ございませんでした。

教えていただいた参考文献を中心に勉強しなおして見ます。

お忙しいところありがとうございました。

お礼日時:2001/05/21 18:01

rei00 です。

お礼拝見しました。

>確認法3をCDCl3(300MHz)で行ってみましたが、結果はCD3CN(400MHz)の時と同じでした。

 そうですか。この辺は溶媒の極性の差を利用していますので,極性が大きく異なる溶媒(例えば,重メタノ-ルや重DMSO)を試みられた方が良いかも知れません。


>つまり、アルキル鎖の炭素数が2(エチル)の時だけ非等価なプロトンが存在すると言うことなのでしょうか?

 おそらくそうでしょう。メチルの場合,4つのメチルがアンモニウム部分に直接付いているため,全てのメチル基が等価になっていると思います。

 一方,プロピル以上になると,メチル基がアンモニウム部分から離れるため複数の配置が可能になり,かつそれらの配置間の相互変換が起きるため,平均化された1種類のシグナルになると考えられます。

 で,中間のエチルの場合は上記2つの中間で,メチル基に関して複数の配置があり,かつそれらの配置間の相互変換が遅いため,それらがそれぞれのシグナルとして現れていると考えられます。


ところで,少し気なったのですが,ご質問を見てもお礼を見ても,「メチルプロトンが自由回転出来ないために非等価」や「非等価なプロトン」といった表現がありますが,今の場合,非等価になっているのは「メチルのプロトン」ではなく「複数個のメチル基」と考えるべきです。

もう少しくわしく書くと,今ある4つのメチル基を A, B, C, D としますと,各メチル中のプロトンは等価です。つまり,メチル A 中のプロトン A1, A2, A3 は等価です。勿論,他のメチルについても同じです。違うのは,メチル A とメチル B の環境(上で配置といったのはこれの事です)が違うのです。

これが何故そう言えるかというと,メチル A 中の A1, A2, A3 が非等価であった場合,A1 と A2, A1 と A3 のカップリングが出るはずで,シグナルの見かけが今御覧になっているものと変わってきます。


いかがでしょうか。
    • good
    • 0
この回答へのお礼

ありがとうございました。御礼が遅くなって申し訳ございません。
とりあえず、レポートの提出にはこぎつけました。

>ところで,少し気なったのですが,ご質問を見てもお礼を見ても,
>「メチルプロトンが自由回転出来ないために非等価」や「非等価なプロトン」
>といった表現がありますが,今の場合,非等価になっているのは
>「メチルのプロトン」ではなく「複数個のメチル基」と考えるべきです。

まったく勘違いしていました。ご指摘ありがとうございます。

ついでと言っては何ですが、J値の計算で負の値になることもある
といくつかの本に書いてあったのですが、
具体的な(一般的な)理論などが記載されていない本ばかりで、
・ジェミナルなら一般に負
・結合角度(二面角)による
ぐらいしかわかりません。
授業では(δ値の差)×(周波数)×10^6
と教わったので負になる理由がわかりません。

何かよい参考資料か何かございましたらお願いします。

お礼日時:2001/05/15 11:27

情報不足ではっきり分からないのですが・・・



まずシグナルの形はどうなっていますか?
トリプルトリプレットとのことですが、それぞれのトリプレットの
ピークの高さの比は1:2:1になっていますか?

それからNに隣接するメチレンのピークはどうなっていますか?

なお、もしメチル基の3つの水素が非等価であるならば化学シフトが違う
3本のピークになるはずです。
逆に化学シフトが同じだとするとこれらの水素の間にはカップリングは
見えないはずです。
(お互いカップリングしている2つのシグナルが接近すると内側のピークが
大きく、外側のピークは小さくなり化学シフトが一致すれば外側のピークは
完全に見えなくなってしまうことを思い出してください。)
なので、この可能性はないと思われます。

この回答への補足

早速の回答ありがとうございます。
情報不足ですみませんでした。

まずシグナルの形ですが、
大きく分かれた方は凡そきれいな1:2:1になっていますが、
小さなJ値の方は
低磁場側(δ大)のトリプレットは右上がり。
真中のトリプレットと高磁場側(δ小)トリプレットはそれぞれ
左上がりとなっています。

メチレンプロトンはδ=3.14あたりにきれいなカルテットで
現れました。J=7.2です。

補足日時:2001/05/10 00:35
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QNMRが(>o<)…

 とにかくNMRがわけ分かりません。例えば、どういうときに、ダブレットになるのか、ダブルダブレットになるのかとか、なんか2Hとか6Hとか書いてあってそれが何なのかとか、とにかく基本的なことから理解できてません。
 なにかNMRを理解するためのアドバイスや基本的な事項をなんでもいいから教えて下さい。又はNMRに関して詳しく書いてあるサイトを紹介してくださっても結構です。

Aベストアンサー

NMRとは核磁気共鳴(Nuclear Magnetic Resonance)の略で、特定の原子核に磁場の存在下に電磁波を当てると、その核の環境に応じた周波数(共鳴周波数)で電磁波の吸収が起こる現象のことです。

とこんな堅苦しいことを書いても理解しづらいと思うので、1H-NMRについて簡単に説明すると、
まず測定した物質内に水素原子が存在すると、その環境に応じて吸収(ピーク)が現れます。
同じ環境の水素(CH3の3つの水素など)はすべて同じ位置に出るし、違う環境の水素は違う位置に出ます。
この位置というのは、標準物質との差で表します。
共鳴周波数の標準物質からのずれを当てている磁場の周波数で割ったもので、だいたい100万分の1から10万分の1程度になることが多いのでppm単位で表します。標準物質をテトラメチルシラン(TMS)にするとほとんどの有機物の水素は0~10ppmの範囲内に出ます。
違う環境の水素同士が立体的に近い位置にある場合、相互作用をします。これをカップリングと呼びます。ビシナル(隣り合う炭素についた水素の関係)の場合が多いですが、ジェミナル(同じ炭素についた水素同士)でもお互いの環境が違う場合はカップリングするし、それ以外でもカップリングする場合がありますが、詳しくは割愛します。
カップリングした場合、その水素のピークは相手の等価な水素の数+1の本数に分裂します。
例えば酢酸エチル(CH3-CO-O-CH2-CH3)の場合、右端のメチルの水素は隣にメチレンがあるのでカップリングし、メチレン水素は2個なので3本に分裂します。
メチレンの水素も同じように右端のメチルとカップリングするわけですから、4本に分裂します。
カップリングする相手の水素が1個の場合は2本でこれをダブレットと呼びます。3本はトリプレット、4本はカルテット。
上の酢酸エチルの左端のメチルは隣の炭素に水素がついてないのでカップリングせず1本(シングレット)に出ます。
n-プロパン(CH3-CH2-CH3)の場合、中央のメチレンは隣に水素が6個あり、それが全て等価なので7本(セプテット)になります。
カップリングする水素が2個あってその2個が等価でない場合は両方とダブレットを形成するのでダブルダブレットとなります。
例を挙げると、CHX2-CHY-CHZ2のようなものです。
この物質の中央の炭素についた水素は、等価でない両端の水素とそれぞれカップリングし、ダブルダブレットになります。

次に1H-NMRはピークの面積がその水素の数に比例します。測定時はそのピークの積分比を取ることにより、そのピークの水素の数を求めることが出来ます。酢酸エチル(CH3-CO-O-CH2-CH3)では左から順に3:2:3の比になります。
この等価な水素の数を2Hとか3Hとかと書きます。

それから上でカップリングについて書きましたが、分裂する幅を結合定数と呼び、その幅の周波数(Hz)で表します。
互いにカップリングしている水素同士の結合定数は同じ値になります。

結構長くなってしまいましたが、これは基本の基本でしかないので、機器分析の本などを読んで詳しく勉強した方がいいと思います。

参考URL:http://www.agr.hokudai.ac.jp/ms-nmr/assign/index.htm

NMRとは核磁気共鳴(Nuclear Magnetic Resonance)の略で、特定の原子核に磁場の存在下に電磁波を当てると、その核の環境に応じた周波数(共鳴周波数)で電磁波の吸収が起こる現象のことです。

とこんな堅苦しいことを書いても理解しづらいと思うので、1H-NMRについて簡単に説明すると、
まず測定した物質内に水素原子が存在すると、その環境に応じて吸収(ピーク)が現れます。
同じ環境の水素(CH3の3つの水素など)はすべて同じ位置に出るし、違う環境の水素は違う位置に出ます。
この位置というのは、...続きを読む

Q有機化合物_NMRがとれない理由

ある有機化合物を合成し、プロトンNMRを重溶媒で測定しようとしたところ、溶媒のピークと水のピークだけ現れました。前駆体までは問題なく重クロで測定できたのですが。

化合物のピークが取れないのは溶解度が低いからでしょうか?溶媒に色が付くぐらいには溶けるのですが、重溶媒1mlに対し、0.1mgぐらいしか溶けていなかったかもしれません。

重クロでとれず、重DMSOでも取れませんでした。合成を確認するためにできれば測定したいと思っています。
このような場合、みなさんならどうしますか。
1.他の重溶媒を試す
2.固体NMR
その他、いい測定法があれば教えていただけるとありがたいです。

指導教員に固体NMRが使えるかどうか聞いたら、”君は固体NMRについて何も知らないからそういう質問をするんだ”というような事を云われました。固体でプロトンNMRを測るのは無理なのでしょうか?研究室の流れとして、多核では固体でとっているようなのですが。

よろしくおねがいします。

Aベストアンサー

装置の使用環境が分かりませんので、全く当てはまらない場合はご容赦ください。

溶液と固体に分けてコメントしてみますね。少しでもお役に立てば良いですが。

1.溶液測定
 まず溶液測定の前提として、とにかく試料を溶解させることが必須です。構造や分子量に
 よっても色々ですが、通常の場合プロトンならば0.1%くらいの濃度があれば測定可能と
 思ってください。溶液のプロトンにこだわるならば、この濃度を稼げる重溶媒を何とか探
 しましょう。でも、間違っても重溶媒で溶解性試験はやらないでくださいね。

 もうひとつ、ご質問の末文にある「多核」を利用する方法があります。具体的にはカーボ
 ン核で見る方法です。軽溶媒に溶解してロックをかけずに測定します。最近の装置はマグ
 ネットが安定していますので、この方法でも大きな問題無くデータが得られると思います。
 但しオペレーションが若干特殊なので、装置を管理している方にご相談されるのが良いで
 しょう。

2.固体測定
 結論は余りオススメしません。

 指導教員の方が「測定原理」「オペレーション」「解析」のどれを指して「何も知らない」
 とおっしゃっているかは気になりますが…

 固体測定の場合は、残念ながら期待するようなデータは簡単には得られません。どうして
 も溶液測定が実施できない場合に再考されてはいかがですか。


 長くなってごめんなさい。参考になれば幸いです。

装置の使用環境が分かりませんので、全く当てはまらない場合はご容赦ください。

溶液と固体に分けてコメントしてみますね。少しでもお役に立てば良いですが。

1.溶液測定
 まず溶液測定の前提として、とにかく試料を溶解させることが必須です。構造や分子量に
 よっても色々ですが、通常の場合プロトンならば0.1%くらいの濃度があれば測定可能と
 思ってください。溶液のプロトンにこだわるならば、この濃度を稼げる重溶媒を何とか探
 しましょう。でも、間違っても重溶媒で溶解性試験はやらないでくださ...続きを読む

Q「ダブルダブレットとトリプレットの違い」について教えてください。

スピンカップリングでシグナルは3重線で強度比は1:2:1であるにもかかわらず、トリプレットではなくダブルダブレットと呼ぶ場合がよくわかりません。トリプレットとダブルダブレットの違いは何なのでしょうか?

Aベストアンサー

たとえばスピン結合の相手になる等価な原子が2個あればトリプレットになります。

たとえば、C6H5COOCH2CH3において、CH3のHはスピン結合の相手になるHが2個(CH2のHです)あるのでトリプレットになります。

また、>CH-CH2-CH< (<,>はH以外に結合していると考える)の場合、CH2はダブルダブレットになります。通常は結合定数が違うので4本に分裂しますが、たまたま結合定数が等しければ、見かけ上はトリプレットになります。ただし、構造的にはダブルダブレットになると考えた方がよいでしょう。すなわち、分解能が不十分であればトリプレットに見えても、分解能が高くなればダブルダブレットになる可能性があるということです。

Q共役の長大=長波長シフト?

芳香族多環化合物で、π電子共役系が伸びることによってなぜHOMO-LUMO差が縮まるのかがわかりません。
π電子共役系が伸びるとUV吸収スペクトルの吸収極大は長波長シフトすることは実験的にわかります。そして、長波長シフトはHOMO-LUMO差が縮まることによって引き起こされることも理解できますが、なぜHOMO-LUMO差が縮まるのかがわかりません。
なるべく量子化学に踏み込まずに、単純に説明できる方がいらっしゃいましたらお願いします。

Aベストアンサー

例えば、水素原子二つから水素分子ができる場合、それぞれの電子軌道を
下図のように描いたと思います;


↑      ─σ*    ←軌道の重なりで生じた反結合性軌道
|    /   \  
|1s─       ─1s ←軌道が重なる前のエネルギー準位
|    \   /
|      ─σ     ←軌道の重なりで生じた結合性軌道

|  Ha      Hb
 (Ha、Hbはそれぞれ水素原子)


π電子共役系でもこれと同様に考えると、感覚的に理解できるかもしれません。
まず、その共役系の4つの原子の、π結合にあずかる4つのp軌道について、
それぞれ2個同士で軌道の重なりを考えます;


↑        ─ πab*           ─ πcd*
|      /   \           /   \  
|     /      \        /      \  
┼ 2p─          ─2p 2p─          ─2p
|     \      /        \      /
|      \   /           \   /
|         ─ πab           ─ πcd

   Ca         Cb    Cc         Cd
 (Ca~Cdはそれぞれ炭素原子、πab・πab*はそれぞれCa・Cbのp軌道の
  重なりで生じた結合性軌道・反結合性軌道。πcd・πcd*も同様)

次に、このπab・πab*とπcd・πcd*との間の軌道の重なりを考えます。
このとき、先程のp軌道同士の場合に比べると、軌道の重なりは小さいため、
エネルギー準位の分裂幅も小さくなります(因みに、重なり0→分裂幅0);

                 _π4
E            /       \
↑  πab* ─                ─ πcd*
|           \       /
|                ̄π3

|               _π2
|           /       \
|   πab ─               ─ πcd
|           \       /
                  ̄π1
   Ca         Cb    Cc         Cd

 (元のp軌道は省略、そのエネルギー準位は左端の『┼』で表示)


この結果、Ca~Cdの炭素上にπ1~π4の4つの軌道ができます。
元のp軌道よりエネルギー準位の低いπ1・π2が結合性軌道(π2がHOMO)、
高いπ3・π4が反結合性軌道(π3がLUMO)になります。
(軌道が重なると、「重なる前より安定な軌道」と「重なる前より不安定な軌道」が
 生じますが、このように、必ずしもそれが「結合性軌道と反結合性軌道となる」
 とは限りません;その前に大きな安定化を受けていれば、多少不安定化しても
 結合性軌道のまま、と)

このように考えれば、それぞれのHOMOとLUMOのエネルギー差は、CaとCbの2つの
π電子系で生じた時に比べ、Ca~Cdの4つのπ電子系の方が小さくなることが
理解していただけるのではないかと思います。


<余談>
このようにして共役系が延長していくと、軌道の重なりによる安定化幅はさらに小さく
なっていくため、「軌道」というよりは「電子帯(バンド)」というべきものになります。
また、HOMO-LUMO間のエネルギー差も縮小し、常温で励起が起こるようになります。
これによって、芳香族ポリマーや黒鉛などは電導性が生じているわけです。

例えば、水素原子二つから水素分子ができる場合、それぞれの電子軌道を
下図のように描いたと思います;


↑      ─σ*    ←軌道の重なりで生じた反結合性軌道
|    /   \  
|1s─       ─1s ←軌道が重なる前のエネルギー準位
|    \   /
|      ─σ     ←軌道の重なりで生じた結合性軌道

|  Ha      Hb
 (Ha、Hbはそれぞれ水素原子)


π電子共役系でもこれと同様に考えると、感覚的に理解できるかもしれません。
まず、その共役系...続きを読む

QプロトンNMRのブロード

与えられたプロトンNMRから有機化合物を同定したいのですが、NMRには5~3ppmで極端に平らなブロードがあります。ブロードするものとして、ヒドロキシル基、カルボキシル基、アミノ基、アミド基、のほかにどんなものがかんがえられるのでしょうか?
ちなみにベンゼンの三置換体で、分子量は138.12ということが分かっています。またIRも与えられています。

Aベストアンサー

IRスペクトルから官能基の判断ができると思うのでそこから確認されればいいのではなでしょうか.フリーのOH基であれば3650-3590に鋭い吸収,カルボン酸類のOH基であれば3200-2500に幅広い吸収があります.アミノ基の伸縮振動は水酸基と似ていますが水素結合しにくいことから鋭い吸収になる傾向があります.変角振動は1650-1560に吸収があります.芳香族カルボン酸のカルボニルの吸収は1830-1780に吸収があります.他にも特性吸収がありますのでそれらを確認して官能基を決定されればよいのではないでしょうか.ちなみにペプチドのアミド結合のNHは7~8ppmあたりに信号がでます.

Q13C-NMRスペクトル法に関して

溶媒であるCDCl3のCのピークが78ppm付近で3重線として現れるのはどうしてなのでしょうか?
NMRに詳しい方、教えてください。
お願いします。

Aベストアンサー

スピン結合の 2nI+1の法則というのはご存知ですか?
多重度(一次の分裂パターン)は
あらゆる核で2nI+1で表されます。
(n: 隣接している等価なスピン結合をしたプロトン数
I: スピン)

重水素(D)はスピンが1なので
CDCl3の場合は、
n=1、I=1なので、多重度が 2 + 1 = 3 になるわけですね。
なので、13Cの吸収線は
トリプレット(強度1:1:1)に分裂します。

QプロトンNMRの高磁場シフト、低磁場シフトについて

 化学論文を読んでいて、包接錯体形成によりあるNMRスペクトルが高磁場シフトや低磁場シフトをしているものがありました。
 色々調べていて、溶媒を変えるなどによって環境が変わったり、相互作用があると高磁場シフトや低磁場シフトが起こるということはなんとなく分かったのですが、同じ相互作用でも高磁場シフトしているものと低磁場シフトしているものがあり、原理の部分がいまいち分かりません。
 どういうときに高磁場シフトもしくは低磁場シフトするのかを教えてもらえるとうれしいです。よろしくお願いします。

Aベストアンサー

当たり前のことですが、化学シフトはプロトンの周辺の電子密度が高ければ高磁場側になり、電子密度が低ければ低磁場側になります。
包接錯体形成によって、プロトンの周囲の電子密度が低下すれば低磁場シフトしますし、増大すれば高磁場シフトをすることになります。
つまり、錯体形成による電子密度の変化を反映しているということになり、それは錯形成の相手の原子の種類や電子密度などの影響を受けます。また、不飽和結合があれば、環電流の影響も考えられます。

QNMRを論文に載せる一般的な表記方法

よろしくお願いします。

今回お聞きしたいのは、NMRの載せ方です。
私の研究チームの代々の載せ方は
たとえば
1-1-1に出発物質の数値のみ。
1-1-2に次の生成物の数値のみ。

1-2-1に出発物質のグラフを載せる。
1-2-2に次の生成物のグラフを載せる。
という感じにしています。
具体的に数値とは、δ=6(2H,d,J(イタリック)=2.0Hz)といったようにです。
そして、グラフとはいわゆるチャートです。

その場合前者はなんというのでしょうか?
NMR DATAですか?NMR ケミカルシフトですか???
また、後者は一緒でdataなのでしょうか?それともNMRチャートというのでしょうか?

これは1-1 NMRデータと書くべきか、1-1 NMRケミカルシフトと書くべきか。
そして、1-2 NMRチャートと書くべきか、NMRデータと書くべきか。
悩んでます。

先輩たちも結構適当らしく、一貫性にかけていますし、先輩数が少ないこともあり、あまり参考にできるほどありません。ようは、この表記方法は少ないからやめておこう。これは多いからまねようということができないのです。

どなたかお詳しいかたよろしくお願いいたします。

よろしくお願いします。

今回お聞きしたいのは、NMRの載せ方です。
私の研究チームの代々の載せ方は
たとえば
1-1-1に出発物質の数値のみ。
1-1-2に次の生成物の数値のみ。

1-2-1に出発物質のグラフを載せる。
1-2-2に次の生成物のグラフを載せる。
という感じにしています。
具体的に数値とは、δ=6(2H,d,J(イタリック)=2.0Hz)といったようにです。
そして、グラフとはいわゆるチャートです。

その場合前者はなんというのでしょうか?
NMR DATAですか?NMR ケミカルシフトですか???
ま...続きを読む

Aベストアンサー

補足です。
一般的には図のことを「NMR spectrum」と呼ぶようです。
数値の方は、論文では「NMR (CDCl3) δ ・・」のように書いてしまいますが、呼称としては「NMR data」で良いと思います。

ちなみに、我々は「NMRを測定する」とか、「これのスペクトル(図のこと)見せて」とか、「NMRデータ(数値のこと)をまとめといて」という言い方をします。・・・本論とは関係ないですが。

QW/V%とは?

オキシドールの成分に 過酸化水素(H2O2)2.5~3.5W/V%含有と記載されています。W/V%の意味が分かりません。W%なら重量パーセント、V%なら体積パーセントだと思いますがW/V%はどのような割合を示すのでしょうか。どなたか教えていただけないでしょうか。よろしくお願いいたします。

Aベストアンサー

w/v%とは、weight/volume%のことで、2.5~3.5w/v%とは、100ml中に2.5~3.5gの過酸化水素が含有されているということです。
つまり、全溶液100ml中に何gの薬液が溶けているか?
ということです。
w/v%のwはg(グラム)でvは100mlです。

QDMFの1H-NMRのシグナルについて

「N,N-Dimethylformamide(DMF)をCDCl3に溶かした試料の1H-NMRを室温で測定すると、
8.0、3.0、2.9ppmのケミカルシフトに1:3:3のピークを与える」という文章があったのですが、
2つあるmethyl基のHが等価ではなかった、ということに疑問を感じました。
「アミド結合の構造上の特徴」が理由であるようなのですが、
共鳴構造くらいしか思いつかず、よく分かりません。
なぜ2本ではなく3本のピークが出るのか、教えていただけないでしょうか。

また、「温度を上げていくとシグナルが変化する」とあったのですが、
どのように変化するのか分かりません。
「温度可変NMR」という質問
http://oshiete1.goo.ne.jp/qa1838559.htmlを見ても
よく理解できませんでした。
こちらも教えていただけないでしょうか。
よろしくお願いします。

Aベストアンサー

共鳴構造のせいであってますよ。
窒素のローンペアからカルボニル基に電子が流れ込んだ極限構造の寄与が大きいため、Me2N(+)=CH-O(ー)のようなエノラート型構造に近づきます。これだと、アルケンと同じで、窒素上の二つのメチル基は非等価ですよね?

また、温度可変NMRで温度を上げていくと、二つのメチル基のシグナルはじょじょに広がり、ある温度で融合して一本となり、さらに温度を上げていくと通常の鋭い一本線となるでしょう。
上述したように、N-C間には二重結合性がありますが、これは完全な二重結合ではないため、十分な熱エネルギーを与えれば回転して異性化できます。
室温以下ではこの異性化はNMRのタイムスケールに比べて遅いため、NMRで観察する限り、あたかもDMFは上述した極限構造の形で止まっているかのように見えます。
しかし温度を上げてやると、N-C結合周りの回転は速まり、NMRでは両者がだんだん混じってしまって区別できなくなります。

そうですね、自転車や車のホイールのリムを考えてみましょうか。
止まっていたり、回転が遅いとリムは目で見えますね。
でも、回転が速くなると、目では追いきれなくなってしまいます。
(もっとも、このたとえだと、回転が速くなったときに全部が区別されなくなる、というのが説明できないけど(汗)

この現象はDMFに限らず、二つ(あるいはそれ以上)の構造の間でゆっくりとした構造変化が起こっている場合に観察できます。
条件は、相互変換のスピードがだいたい秒のオーダーであること。これはNMRの原理的な問題です。
それ以上に速い反応になると、より高速な分光法が必要です。
逆にもっと遅い反応となりますが、X線回折などで反応変化を追う、というおもしろい実験もあります。

共鳴構造のせいであってますよ。
窒素のローンペアからカルボニル基に電子が流れ込んだ極限構造の寄与が大きいため、Me2N(+)=CH-O(ー)のようなエノラート型構造に近づきます。これだと、アルケンと同じで、窒素上の二つのメチル基は非等価ですよね?

また、温度可変NMRで温度を上げていくと、二つのメチル基のシグナルはじょじょに広がり、ある温度で融合して一本となり、さらに温度を上げていくと通常の鋭い一本線となるでしょう。
上述したように、N-C間には二重結合性がありますが、これは完全な二重結合...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング