人に聞けない痔の悩み、これでスッキリ >>

交流でバッテリーを充電するのは物理的に無理な理由を説明してください。

A 回答 (5件)

バッテリーの充電はバッテリーより高い電圧が必要です。

低い電圧をかければ充電ではなく放電になります。交流をかければバッテリーの電圧よりも低い時間の方が長いのは電気の知識が少しでもあれば判ると思います。
例えば12Vのバッテリーに、実効値12Vの交流をかけるとと言う事は+17V~-17V位の電圧をかける事になります。
    • good
    • 0
この回答へのお礼

ありがとうございます

お礼日時:2017/07/24 22:11

分かりやすい例えで説明します。



バッテリーを貯水池だと思ってください。貯水池に水(という電気エネルギー)が溜まっているのがバッテリーです。その貯水池に水を溜める(充電する)ために、その貯水池にパイプ(充電ケーブル)を取り付け、そのパイプの他端は大きな水瓶(充電のための電源)に接続します。

もし水瓶が貯水池よりも高い位置にあると、パイプを通して水が水瓶から貯水池のほうに流れ、貯水池には水が溜まって行きます(充電されます)。ですが、水瓶が貯水池よりも低い位置に来ると、貯水池から水瓶のほうに水が流れ出てしまい、充電どころか放電になります。

水瓶(充電のための電源)が交流ということは、水瓶の位置が高くなったり低くなったり交番する....ということなんです。なので、交流ではバッテリーは充電できません。もし交流の電源を使ってバッテリーを充電するのなら、貯水池の例で言うと....パイプに「逆流防止弁」を付ければよろしい。つまり、水瓶から貯水池の方向に水は流れるが、貯水池から水瓶のほうには逆流防止弁の働きによって水は流れないようにするといいわけ。

逆流防止弁と同じ働きをするのが「ダイオード」です。交流の電源を使ってバッテリーを充電するためには、ダイオードを途中に入れなければなりません。
    • good
    • 0
この回答へのお礼

ありがとうございます

お礼日時:2017/07/24 22:11

整流すれば出来ます。



電池は化学的な不均衡を作り出すことで充電するから
充電電流には向きが有り、交流では充電できません。
    • good
    • 0
この回答へのお礼

ありがとうございます

お礼日時:2017/07/24 22:11

バッテリーの充電=ダムに水をためる(汲み上げる)作業と考えてください。



直流はひたむきに汲み上げ続けますが、交流は、徐々に汲み上げなくなり、それどころかある程度汲み上げたら、徐々にダムの方から水を下に流し始めます(放電)しばらくしたら、また汲み上げて、、。それを延々と繰り返すから、貯まりようがないのです。
    • good
    • 0
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q物理と数学の違いについて 続きです。 例えば長方形の一辺がx「cm」もう一方がy「cm」 y「cm」

物理と数学の違いについて
続きです。
例えば長方形の一辺がx「cm」もう一方がy「cm」
y「cm」=x^2「cm」
という関係をもつ2つの長さを求める問題は存在します。
しかしこの式は物理ではあり得ない式となるらしいです。
物理では両辺の単位が揃っていないといけないので左辺の単位は「cm」右辺の単位は「cm^2」だからです。
ただこのような関係をもつ長方形の集合は現実に存在します。
しかし物理としては❌です。
つまり自然から導き出した等式を見つけるのが物理で、その単位は必ず一致している。
人為的に等式を作り出すのが数学で、その単位が一致しているとは限らない。
という理解でいいですかね?

Aベストアンサー

最初に教えた人は「単位をそろえて一致させます」、実際の言葉はともかく内容はこうだったはずです。
国語の理解能力が十分でない質問者にとっては「そろえる」「一致させる」の区別があいまいなままでした。
板書で例を示すと、1mと50cmをつなぐと?、1m+50cm=150m(cm)?、このままでは数値のみの計算できません、そこで単位をそろえます①100cm+50cm=150cm。
単位がすべて一致、左辺右辺の単位も一致しています。
これをどう理解記憶するかが問題です。
国語の理解能力なし、結果だけほしがる、コピペ頭、が三重奏を奏でると。
「そろえる」「一致させる」の区別があいまいのため、似たようなもの、または同じと思い込む
①の板書は、そろえる、の内容ではなく、そろえた結果、です、結果だけ欲しがり、なぜ?は考えません。
結果の見てくれだけを、そのままコピペ、記憶の際、国語の理解能力欠如のため「そろえる」「一致」が同じと思い込み、見た眼だけで簡単にわかる「一致」だけで記憶した。
これがすべてです。
物理では次元の異なる単位の数値を掛け算、割り算します、答えも全く異なる次元の異なる単位になります。
単位が一致しません、そこで慌てて、自分の間違った概念に無理やりくっつけたのが、法則や比例・・・そのたの言葉です。
長さ×長さ=面積、m×m=m²、右辺と左辺単位が異なります、でもこれ物理の計算というより、算数レベルの計算ですね、そんなことには目をつぶっています。
小中学生対象の学力テストの結果、国語の読解力が諸外国に比べ相当劣っているらしい、質問者は明らかにその元凶のうちの一人と思います。
ハイ、お粗末。

最初に教えた人は「単位をそろえて一致させます」、実際の言葉はともかく内容はこうだったはずです。
国語の理解能力が十分でない質問者にとっては「そろえる」「一致させる」の区別があいまいなままでした。
板書で例を示すと、1mと50cmをつなぐと?、1m+50cm=150m(cm)?、このままでは数値のみの計算できません、そこで単位をそろえます①100cm+50cm=150cm。
単位がすべて一致、左辺右辺の単位も一致しています。
これをどう理解記憶するかが問題です。
国語の理解能力な...続きを読む

Q相対性理論とはなんですか? 最近なぜか分かりませんが、相対性理論が流行っていて、話についていけません

相対性理論とはなんですか?
最近なぜか分かりませんが、相対性理論が流行っていて、話についていけません。
僕でも理解できるようにどなたか回答お願い致します。
僕にとって分かりやすかったと思った説明をしてくださった方をVIPに選びますね(^∇^)

Aベストアンサー

私も中学生の頃に読んだ本の知識しかないんだけどね。
ちなみに計算自体は中学生数学でどうにかなる。
だけど、相対性理論で出てくる現象を理解するには、少なくとも高校生レベルの知識が必要になる。
多分君の周りで相対性理論の話題を出している人たちも、現象の半分も理解できていないと思うよ。

さて、じゃあ超簡単にどんなものかと言うと、要するに物理の理論。
細かい事を言い出すとメチャクチャ難解な理論。
で、「特殊相対性理論」と「一般相対性理論」の二つに分かれる。
ちなみに難易度は一般相対性理論の方が高い。

んじゃどんな現象のことかっていうと
特殊相対性理論では
1、光より速く動けるものはない
2、光に近い速度で動いているものの長さは縮んで見える
3、光に近い速度で動いているものの時間は遅く流れる
ってこと。
一般相対性理論は特殊相対性理論に重力を加味したもので
1、重力の強い場所ほど時間が遅く流れる
2、重力の強い場所ほど空間が歪む
3、止まっているものでもエネルギーがあって、重いほどエネルギーが大きい
てなとこ。

これらを様々な数式を使って証明して「ほらね、俺の言った通りでしょ?」っていう話。

でもってこれらの理論によって、宇宙の始まりって言われているビッグバンや、ダイソンの掃除機よりも何でも吸い込んでしまうブラックホールも、さっき挙げた6つのことで説明することができる。
どうやってそれを説明するかって話は、難しい話になるから割愛するし、何より私も説明しきれるほど知らない。

かなり簡単にエッセンスだけを抽出してみた。
とりあえず数式を解くだけなら中学生の数学で解けるけど、理解しようとしたら高校生くらいまで待てって話。

私も中学生の頃に読んだ本の知識しかないんだけどね。
ちなみに計算自体は中学生数学でどうにかなる。
だけど、相対性理論で出てくる現象を理解するには、少なくとも高校生レベルの知識が必要になる。
多分君の周りで相対性理論の話題を出している人たちも、現象の半分も理解できていないと思うよ。

さて、じゃあ超簡単にどんなものかと言うと、要するに物理の理論。
細かい事を言い出すとメチャクチャ難解な理論。
で、「特殊相対性理論」と「一般相対性理論」の二つに分かれる。
ちなみに難易度は一般相対性理...続きを読む

Qなぜ1m+1m=2mなのですか? そう定義したからですか?

なぜ1m+1m=2mなのですか?
そう定義したからですか?

Aベストアンサー

どうも、先の回答は、「有名・著名な原理や法則といえども証明できるものではない」という狭い意味にとらえられてしまうかもしれませんが、文意は「有名・著名なものからごく身近なものまで、すべて原理・法則というものは証明の対象ではない」というものです。

実際、エネルギと質量の交換が行われる局面ではエネルギ保存則、質量保存の法則はそれぞれ単独では成り立たず双方を考慮した修正が行われます。
万有引力の法則も、引力が大きくなると修正(誤差を許容できなくなる)が必要です。

3時間前に時速4kmで出発した弟を、お兄さんが時速16kmの自転車で追いかけるときの追いつく時刻についても、単純な引き算・割り算「ex4×3÷(16-4)」だけでなく、観測者がだれなのかといった視点も含め一般相対論による修正が厳密には必要でしょう。


付言するならば、「算数」という教科は、この世の「自然に受け入れられている身の回りの法則・原理について学ぶ(つべこべ言わずに覚える)教科」であり、「数学」はこの世の法則にとどまらず、厳密な意味での「数の体系」についても学ぶ(厳密性を追求し、証明を求める)教科です。

どうも、先の回答は、「有名・著名な原理や法則といえども証明できるものではない」という狭い意味にとらえられてしまうかもしれませんが、文意は「有名・著名なものからごく身近なものまで、すべて原理・法則というものは証明の対象ではない」というものです。

実際、エネルギと質量の交換が行われる局面ではエネルギ保存則、質量保存の法則はそれぞれ単独では成り立たず双方を考慮した修正が行われます。
万有引力の法則も、引力が大きくなると修正(誤差を許容できなくなる)が必要です。

3時間前に時速4k...続きを読む

Q遠心力はなぜ見せかけの力と呼ばれているのですか?

等速円運動をしている物体は、中心方向にrω^2の加速度を持ち、これに質量mをかけた力Fを向心力といいますが、一方でなぜ遠心力は慣性系で見せかけの力といわれているのでしょうか?個人的には、遠心力は見せかけの力などではなく、向心力との力のつり合いや、向心力の反作用のような気がするのですが。また、遠心力が見せかけの力なのであれば、向心力も見せかけの力であると考えますが、向心力はそういう定義ではありませんよね。遠心力は実際に、水の入ったバケツを振り回した際、水がこぼれなくなる力であり、スクーターなどの遠心クラッチや遠心プーリなどは、この原理を応用して、クチッチや、プーリの開閉をしてギア比の調整をしています。

お教えください。以上です。

Aベストアンサー

例え話、置き換えての説明が理解できないと理解できませんが。
実験、縦横10Cm、20cmの板20cm側に低い壁を作り、板の中央にさいころを置きます。
その状態で板全体を等速で引っ張ります(慣性で等速直線運動の再現?)。
その状態で、板を急に手前(引っ張る方向とは直角方向)に引っ張ります(向心力という加速度?)。
サイコロはどうなるか?、自身の慣性で板上でその場にとどまろうとするが板は手前に移動する結果、向こう側の壁にぶち当たる。
でも、板だけを見るのではなく、周囲の環境も含めて観察すれば、板は引っ張られる方向に動きつつ手前に移動します、つまり斜めに移動、この瞬間が連続すると軌跡が円運動になります。
その結果さいころは向こう側の壁に押し付けられ続けます。
最初のさいころの動き、板の上だけ見ているとサイコロが向こう側に動いたと見えます、でもサイコロには何も力は加わっていません、力が加わり動いたのは板です。
全体を見ると?、透明の板でしたが方眼紙のようなメモリがあると、サイコロは当初から引っ張られている方向には移動していますが、こちら側にに向こう側にも、壁に当たるまでは移動していません。
でも確かに壁に当たり、何等かの力?は当然感じます、これが遠心力。
反対方向に進む電車が同時に停車していて片方が動き出したとき、一瞬はどちらが動いたのかは判断できないのと同じ。
つまり物体自身の慣性により動こうとしないのに相手が動く、相対的に物体自身が動いたよう感じる。
等速直線運動はどちらも同じ条件のため、停止状態と等価、ゆえに、相対的に感じる遠心力は向心力と正反対になる。

例え話、置き換えての説明が理解できないと理解できませんが。
実験、縦横10Cm、20cmの板20cm側に低い壁を作り、板の中央にさいころを置きます。
その状態で板全体を等速で引っ張ります(慣性で等速直線運動の再現?)。
その状態で、板を急に手前(引っ張る方向とは直角方向)に引っ張ります(向心力という加速度?)。
サイコロはどうなるか?、自身の慣性で板上でその場にとどまろうとするが板は手前に移動する結果、向こう側の壁にぶち当たる。
でも、板だけを見るのではなく、周囲の環境も含めて観...続きを読む

Q今までたくさんの物理についての質問をし、それに答えていただいたことについて、考えてみました。 考えた

今までたくさんの物理についての質問をし、それに答えていただいたことについて、考えてみました。
考えたことを整理していきますので間違った認識があれば正していただきたいです。
①異なる量間の掛け算について
異なる量間の掛け算というのはそれらの量に比例したり反比例したりする新たな量を作り出すことである。
この新たな量はあらゆる量の数値間の関係を特徴付ける。
②次元と単位、比例定数について
物理量の等式において両辺で必ず等しいものは単位ではなく次元である。
したがって、単位が等しくない等式も存在する。
(例 1m=100cm
次元は合わせるものではなく、物理量間の関係を式で説明していくと合うものである。
次元解析とは両辺の単位が普通に式を変形していったら必ず一致することを利用して、計算ミスを防いだり求めたい量のおおまかな形を予想したりするのに使える。
普通に式変形(足し算や掛け算)していく上で、新たな比例定数を必要とする場面に出会うことは絶対にない。
なので振り子の周期は比例定数k×√L/gとおおまかに予想することが可能となる。
式変形とは既存の物理法則を整理する段階である、これは新たな法則が見つかるような段階ではない。
比例定数が存在する(新たな物理法則が見つかる)場面は実験をし、データをグラフ化し分析した時、複数の量の数値の間に経験的事実からなんらかの関係が見つかった時である。
③高校物理について
高校物理では等式における文字とは数値と次元をセットで含んだものである。?
よって例え加速度の『数値』が質量の数値『m』と一致している場合でも、F=m^2という等式はありえない。
なぜなら文字には単位も含まれるので両辺の次元が一致しないし、比較しようがない。これは既存の式から求めたのだとしたら、計算ミスとしか言いようがない。
高校物理では数値で計算する問題は少ない。
あるとするならば、数値の掛け算は変数は次元を含めた文字を使った式で計算し、変形しきった後、数値を代入すると次元の確認が可能となり計算ミスが防げる。
④数学と物理の違いについて
数学とは数値のみ〔無次元の〕関係であり次元は存在しない。
これは量の比であると捉えても良い。
数学の両辺の等式の等さは比の等しさ、つまり両辺に任意の単位をつけた時、両辺の量が等しくなることと同じである。
これにより色んな図形を表現したりできる。
物理の等式の等さとは物理量の等さである。
つまり両辺の数値、次元がともに一致しているはずである。
科学とは経験の学問であり、量間の加法性や、比例関係などは経験により保証される。
そこに数学を応用したのが科学である。
これによりあらゆる自然の現象が表現できる。

という、感じですか…?
みなさんのおかけで前よりはだいぶ分かることが多くなった気がします。〔わかった気になっているだけかも知れませんが…〕
まだまだ誤解や思い込みが多いかと思いますが、指摘して頂ければまた、考えて質問するかもしれません。お願いします。(^.^)

今までたくさんの物理についての質問をし、それに答えていただいたことについて、考えてみました。
考えたことを整理していきますので間違った認識があれば正していただきたいです。
①異なる量間の掛け算について
異なる量間の掛け算というのはそれらの量に比例したり反比例したりする新たな量を作り出すことである。
この新たな量はあらゆる量の数値間の関係を特徴付ける。
②次元と単位、比例定数について
物理量の等式において両辺で必ず等しいものは単位ではなく次元である。
したがって、単位が等しくない等式...続きを読む

Aベストアンサー

まあ、無知の知が大切。新しい概念を知るときにやってはならいことは、逆質問です。

物理学の根底を覆すようなことを思いついたのならともかく、物理学を学ぶうえでの、1ページ目に書いてある次元云々の基本的な問題に対し、無知な素人質問を執拗に繰り返しても、何も得られないと思います。質問者の感覚が追いつかないだけで、正答はすでに出ている。回答のほとんどが、表現は違えど、正当です。わかていないのは、質問者だけなのです。まずその前提にたたないといけません。

新しい概念を咀嚼するとき、いろいろ疑問が起こるのはわかります。しかし、物理の次元の問題、数学と物理の関係など、質問者の質問ないようは、長い歴史で培われてきて、検証によって確立されているすでに答えがある内容です。だからまず、質問者自身が謙虚になり、どんな疑問が自身で起きようと、それは、質問者の知識のなさから来ているという前提にたって、回答を聞き、その内容を吸収しなければならないと思います。

つまり、出ているすべての回答に対し、その回答にわからないことに聞き返すのはいい。
一方で、すぐ自己流に解釈して、こういう意味でいいですかね??と聞き返すことは、ナンセンスであり、タブーです。

例えばこの質問なんて、いったいどういう意味でアタナが質問しているのかよくわからいし、そもそも理解していないあなたの整理を聞いても、いいとも、わるいとも言えない。

新しい概念は、なかなか腹に落ちないものです。教科書、先生の言っていること、多数の回答を、まずは正しいとして、わかっていないのは自分だけだ・・・という前提で謙虚になってみてください。そして、ニュアンスがいまいちわからいことは棚上げして、ひたすら、公式や、他人の言った事実に従って、基本的な問題を解きまくってみてください。するとあるとき、次元の話が、きりが晴れたようにすっと、あなたの中で腹落ちする日がくる。新しいことを学ぶとはそういうことの繰り返しです。

わかっていない人が、新しい概念を素人解釈し、分かっている人たちに、「僕の考え、これで合っているよね?間違っていないよね???」って言うのは、少なくとも、科学的な討議態度ではないと感じます。

まあ、無知の知が大切。新しい概念を知るときにやってはならいことは、逆質問です。

物理学の根底を覆すようなことを思いついたのならともかく、物理学を学ぶうえでの、1ページ目に書いてある次元云々の基本的な問題に対し、無知な素人質問を執拗に繰り返しても、何も得られないと思います。質問者の感覚が追いつかないだけで、正答はすでに出ている。回答のほとんどが、表現は違えど、正当です。わかていないのは、質問者だけなのです。まずその前提にたたないといけません。

新しい概念を咀嚼するとき、いろ...続きを読む

Q原子核崩壊でα線やβ、γ線が出るのはわかるのですが、出続けるメカニズムがわかりません。

原子核崩壊でα線やβ線、γ線が出るのはわかるのですが、出続けるメカニズムがわかりません。放射性物質の半減期は何万年もあるものもあります。原子核が崩壊すればそのエネルギーが放射線となって放出されるのはわかるのですが、それは最初の一回だけ起こって、それが起こればもう起こらないのではないですか? つまり放射線も一回だけ出てもう出ない。それがずっと続いているというのは、ずっと原子核崩壊が続いているということなのでしょうか? 放射線が出続けるメカニズムがわかりません。ご教示よろしくお願いいたします。

Aベストアンサー

ある放射能を持つ核種が、単位時間に崩壊する確率は、置かれている環境に左右されません。その核種、固有値であることが経験的に知られています。
確率なので、1つの粒を見ていれば、

・ いつ崩壊するかは神のみぞ知るということで、だれにもわかりません。
・ もちろん、崩壊してしまえば、その粒からは放射線はでません。

ということになります。

その同じ核種を一定量集め、たくさんの粒を統計的に観察し、半分の粒が放射線を出して崩壊するまでの時間を半減期と呼ぶわけです。
たくさんの粒があるから、放射線が出続ける。別に不思議なことはないですね。

半減期ごとに半分になり、やがてすべて崩壊すると、放射線は出なくなります。

Q数学のイコールの揃え方 中学三年生です。数学の先生に、 ○=△=□ と ○ =△ =□ という書き方

数学のイコールの揃え方
中学三年生です。数学の先生に、
○=△=□ 

 ○
=△
=□
という書き方は正解で、
○=△
 =□
という書き方をしてはいけないと教わりました。
これは本当でしょうか?今まで聞いたことのないことなのでよくわかりません。
また、その理由も教えてください。
分かりにくくすみません。よろしくお願いします。

Aベストアンサー

公的な研究機関の研究者です。
純粋数学の研究ではないのですが、数学をかなり使います。

数学的には、あなたが完全に正しいです。
数学的には、先生が完全に間違っています。
(一切の余地なくです)

「=」の記号は方程式を意味し、方程式は「両辺が等しいこと」以外の意味は一切持ちません。
「段落の使い方」や「幅」や「改行」によって、異なる意味を持たせるなどというルールは
ありません。
(「=」の記号を、世間の定義とは別に新たに定義すれば別です。)

ですが、そういう先生は、自分の間違いを認めません。
表面的でいいですから、間違いを受け入れましょう。
別の先生に言ったところで、その先生のプライドを傷つけて、目をつけられるだけです。

数学は、「正しいこと」が理解できていれば十分です。
テストの点数なんてどうでもいいじゃないですか。
数学なんですから、正しければそれでいいんです。
テストの紙に「×」って書いてあっても、正しいものは正しいです。
入試とかじゃないのならば、それでいいじゃないですか。

「大嫌いなあの先生に一泡吹かせる」
が目的ならば、追求すればいいですが、
「何が正しいのかを知りたい」
のであれば、あなたが100%正しいので、安心して、次の問題に取り組んでください。

ただ、「慣例」というものがあって、
「数学的には完全に正しいけど、記述方法として好ましくない」
というものはあります。

たとえば、文章題で、回答のはじめに
「"+"記号とは引き算を意味すると定義する」
として、「+」記号を引き算の記号「ー」のように使うことは数学的には
完全に正しいですが、好ましくありません。
ある程度、
「みんなで同じ定義や記述方法をそろえておく」
というのは、コミュニケーションの上では結構重要です。
みんなバラバラの定義を使ったら大変ですよね。

○=△
 =□
確かにこのような書き方は、
「3つの式が等しい」
ことを意味するよりも、
「○を変形したら□になりました」
とか
「○にある変数を代入したら□になりました」
みたいな印象を与えます。
そういう意味で、
「正しいけれど、慣例に従ったほうが良い」
として間違いにしたのならば、少し理解できます。
が、やはり数学的には正しいので、数学の問題である以上
「間違い」には出来ないと思います。

公的な研究機関の研究者です。
純粋数学の研究ではないのですが、数学をかなり使います。

数学的には、あなたが完全に正しいです。
数学的には、先生が完全に間違っています。
(一切の余地なくです)

「=」の記号は方程式を意味し、方程式は「両辺が等しいこと」以外の意味は一切持ちません。
「段落の使い方」や「幅」や「改行」によって、異なる意味を持たせるなどというルールは
ありません。
(「=」の記号を、世間の定義とは別に新たに定義すれば別です。)

ですが、そういう先生は、自分の間違いを認...続きを読む

Qなぜ三角のプリズムだと虹ができて、丸いプリズムだとだめなのでしょうか?

丸い表面でも、光が屈折して、虹色を出すように思えるのですが、
どなたか説明して頂けると幸いです・・・

Aベストアンサー

断面が円形、つまりガラス棒でも虹はできます。
レンズ(虫めがね)の断面は円の一部ですからガラス棒と同じような実験ができます。つまり虫めがねでもわずかですが色が付きます。
太陽光を凸レンズを通して白紙に当ててみてください。焦点を作って紙をこがすイタズラをしたことはありませんか? 紙を焦点の位置から近付けたり遠ざけたりすると明るい光輪の周辺に少しですが色が付くことがあります。(火傷や火事に注意!!)
これは色(光の波長)によって屈折率が変わるためですが写真機にとっては大敵。専門的には「色収差」と言います。通常では色収差を防ぐため凸レンズや凹レンズを組み合わせて使います。それでも写真を撮ると虹のようなものが写ることがあります。それをうまく撮った記事があります。(かなり難しかったようですが)
http://m8view.exblog.jp/8047298/

色収差の説明(Wikipedia)
https://ja.wikipedia.org/wiki/%E8%89%B2%E5%8F%8E%E5%B7%AE
色によって焦点の位置が違うことに注意してください。白紙の位置によって虹ができることがわかると思います。

断面が円形、つまりガラス棒でも虹はできます。
レンズ(虫めがね)の断面は円の一部ですからガラス棒と同じような実験ができます。つまり虫めがねでもわずかですが色が付きます。
太陽光を凸レンズを通して白紙に当ててみてください。焦点を作って紙をこがすイタズラをしたことはありませんか? 紙を焦点の位置から近付けたり遠ざけたりすると明るい光輪の周辺に少しですが色が付くことがあります。(火傷や火事に注意!!)
これは色(光の波長)によって屈折率が変わるためですが写真機にとっては大敵。専門的には「...続きを読む

Qモータでこんなことがあるのでしょうか

モータで重量物を上昇と下降をさせております
10年以上正常に上昇と下降を行っておりました

先日、上昇は正常なのに下降は速度が早いと連絡がありました
報告からモータに何らかの不具合が発生したのではと思います
原因はどのようなことが考えられるでしょうか

Aベストアンサー

規定より重い荷物を載せている場合は下降速度が速くなります。
その他いろいろ考えられます。
昇降装置はどのようなの構造なのでしょうか?
昇降装置の構造図やモータをどのように制御しているのかなど
のシステム構成などの図や説明を追加して補足しますと、原因
を推定できる可能性があります。
これらが不可の場合は、製作したメーカーに相談することを
お勧めします。

Q電気は周波数が高いほど電線の表面を電気が走るのはどういった電気の性質の原理ですか?

電気は周波数が高いほど電線の表面を電気が走るのはどういった電気の性質の原理ですか?

Aベストアンサー

それは「表皮効果」と言うものです。

導体の中を電流(交流)が流れると、渦電流が発生します。この渦電流は導体の中心部ほど打ち消しあい、電流を流れにくくするという現象なのですが、電磁誘導の方程式を立てて理論的に解くのはかなり難しくなります。

たとえば雷(直撃雷)が避雷針に落ちて雷撃電流が流れるとします。雷撃電流はインパルス性の衝撃電流なので高調波成分を多く含み、避雷針の表面付近しか流れず、内部には流れないんです。当然ながら導体の見かけ上のインピーダンスは大きくなります。


人気Q&Aランキング