nマット
の検索結果 (10,000件 1〜 20 件を表示)
カブトムシのマット(土)について
…昨日、カブトムシの飼育マットを購入しました。 「ダニを防ぐ」「成虫用」とあったので、ヒノキのマットを購入しセットしていたところ、 裏面の注意書きで「ダニがいなくなったらふつ...…
数列の問題の解答で、 a[n+1]-3a[n]=3(a[n]-3a[n-1])より a[n+1]-3
…数列の問題の解答で、 a[n+1]-3a[n]=3(a[n]-3a[n-1])より a[n+1]-3a[n]=3^n-1(a[2]-3a[1])となっているのですが、これって例えばb[n+1]=3b[n]という漸化式があった時、本来ならb[n]=b[1]3^n-1と持っていく...…
( n(n+1)(2n+1) )/6 の証明について
…1^2 + 2^2 + ... + n^2 = ( n(n+1)(2n+1) )/6 の証明についてです 3(1^2 + 2^2 + ... + n^2) =(n+1)^3 -1 -(3n(n+1))/2 -n =(n+1)^3 - (3n/2)(n+1) - (n+1) =(n+1)((1/2)n(2n+1)) ∴ ( (n+1)((1/2)n(2n+1)) )/3 =( n(n+1)(2n+1) )/6 ...…
数学A 下の写真の問題では rnCr=r・n!/{(n-r)!r!}=n・{(n-1)!}/{(n-
…数学A 下の写真の問題では rnCr=r・n!/{(n-r)!r!}=n・{(n-1)!}/{(n-r)!(r-1)!} r・n!/{(n-r)!r!}=n・{(n-1)!}/{(n-r)!(r-1)!} のところがよく分かりません。 最初のrはどこにいったんですか?…
カブトムシマットの寿命
…皆さんこんにちは、ヘラクレス飼育をしていますが、どーもはっきりしない問題がありますので、詳しい方教えて頂けると嬉しいです。(1)仮に発酵済みの使用最適のマットを今購入した場合...…
lim[n→∞](1-1/n)^n=1/e について
…こんにちは lim[n→∞](1+1/n)^n=e が成り立つことは簡単に示せるのですが、 lim[n→∞](1-1/n)^n=1/e となることの証明はどのようにすればいいのでしょうか? ご存知の方がいらっしゃいました...…
実数xに対してx以上最小の整数を[x]'とします。 [n/2]'+[n/3]'+[n/7]'+[n/
…実数xに対してx以上最小の整数を[x]'とします。 [n/2]'+[n/3]'+[n/7]'+[n/43]'…
漸化式について、 例えば a[1]=-1/4 a[n+1]=a[n]^2-4 のnにn=2nを代入出
…漸化式について、 例えば a[1]=-1/4 a[n+1]=a[n]^2-4 のnにn=2nを代入出来ない(代入した時に成り立たない)理由を教えて欲しいです。…
数学の問題で質問です。 n,kは自然数とする。lim[n→∞]1/n!=0を使って lim[n→∞]
…数学の問題で質問です。 n,kは自然数とする。lim[n→∞]1/n!=0を使って lim[n→∞]n^k/n!=0であることを示す。 まず、 n^k/n!=n/n · n/n-1 · … · n/n-k+1 · 1/(n-k)! また、ある番号N(>2k)以上の全てのnに対...…
玄関マットとスリッパの位置関係
…ずっと気になっていたんですが、スリッパは玄関マットの上に置くものなんでしょうか。それともはずして前あるいは横に置くものなのでしょうか。 職場は鉄筋で一応内部は内履き着用。...…
マットレスはなぜマット「レス」?
…「マットレス」ってありますが、あれって「マット」と何が違うのでしょうか? 「レス」と言っていながら、あきらかに「マット」そのものに思えるのですが。 言葉として見ても、「マッ...…
O(n log n)について2
…n log nはつまり10の(nのn乗)乗という事ですね? なにやらこちらの参考文献にはNの2乗よりn log nの方が効率が良いとあるのですが計算するとn log nのほうが数値が高くなるのですが、これ...…
無限級数Σ(n=1~∞)(n/n^2+1)の収束・発散
…無限級数Σ(n=1~∞)(n/n^2+1)の収束・発散はどのようにしてもとまるのでしょうか? n^2+1は全て分母にあります。 ダランベールを試したのですが…値が1になってしまい行き詰ってます…。 ...…
実数xに対してx以上最小の整数を[x]'とします。 [n/2]'+[n/3]'+[n/7]'+[n/
…実数xに対してx以上最小の整数を[x]'とします。 [n/2]'+[n/3]'+[n/7]'+[n/43]'=n をみたす最大の正の整数nっていくつですか?…
nが整数のとき, 2n^3+3n^2+n は6の倍数であることを証明せ
…nが整数のとき, 2n^3+3n^2+n は6の倍数であることを証明せよ。 上の解き方は,n(n+1)(2n+1)に因数分解し, 2の倍数かつ3の倍数であることを証明すればよいと思うのですが, 教科書には, 2の倍数で...…
高一数A 順列の総数の公式で nPr=n(n-1)(n-2)・・・(n-r+1) というものがありま
…高一数A 順列の総数の公式で nPr=n(n-1)(n-2)・・・(n-r+1) というものがありますよね。最後が(n-r+1)になる意味が分かりません。 説明お願いしますm(_ _)m…
検索で見つからないときは質問してみよう!