y=x^3+(3/2)x^2-6x をxについて微分するとどうなりますか?
ていうより、答えは3x^2+3x-6になるということは分かっていますが、解き方が今ひとつ分からないんです。
まだ学校では習ってないんですが・・・ どなたか、よろしくお願いします!

このQ&Aに関連する最新のQ&A

A 回答 (11件中11~11件)

なかなかの勉強家ですな。

一応高校1年生でもわかるようにf(x)=x^nで、nが自然数のときを解説しますが、せっかくですから「実数」の場合もお教えします。
なお、この「実数」ときのやり方は有理数の場合とはまったく別のやり方をするので、有理数までのやり方は忘れてしまってもよいです。

f(x)=x^nの導関数はあっさりできます。
(a^n)-(b^n)=(a-b)[a^(n-1)+a^(n-2)b+…+a^(n-k){b^(k-1)}+…+ab^(n-2)+b^(n-1)]
という式は右辺を展開すれば成立することがわかる。

f’(x)=lim(h→0){f(x+h)-f(x)}/h=lim(h→0){(x+h)^n-x^n}/h
=lim(h→0)(x+h-x)[(x+h)^(n-1)+(x+h)^(n-2)x+…+(x+h)^(n-k){x^(k-1)}+…+(x+h)^(n-1)]/h
=lim(h→0)[(x+h)^(n-1)+(x+h)^(n-2)x+…+(x+h)^(n-k){x^(k-1)}+…+(x+h)^(n-1)]
=nx^(n-1) (nが自然数のとき)
ちなみnが整数、有理数のときはこれをもとに計算していく。

f(x)=x^(α) (αは実数)のとき
両辺に対数をとると
logf(x)=αlogx 両辺をxで微分して(対数微分法)
⇒f’(x)/f(x)=α/x
⇒f’(x)=αf(x)/x=αx^(α)/x=αx^(α-1)

f(x)=g(x)+h(x)+…と多項式であらわされるとき、
f’(x)=g'(x)+h'(x)+…というふうに項ごとに微分してよい。これは教科書に載っているので調べておいてください。ちなみにこの性質を線形性という。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q「(5x+3)^10でx^pとx^(p+1)の係数比が21:20になる時のpの値」と「x+y=1を満たす全x,yに対してax^2+2bxy+by^2

こんにちは。識者の皆様、宜しくお願い致します。

[問1] (5x+3)^10の展開式でx^pとx^(p+1)の係数比が21:20になる時のpの値を求めよ。
[問2]x+y=1を満たす全てのx,yに対して
ax^2+2bxy+by^2+cx+y+2=0が成立するように定数a,b,cの値を定めよ。

[1の解]
(5x+3)^10=10Σk=0[(10-k)Ck 5x^(10-k)3^k]なので
p=10-kの時(k=10-pの時)
p+1=10-kの時(k=9-pの時)より
a:b=pC(10-p) 5^p 3^(10-p):(1+p)C(9-p) 5^(1+p) 3^(9-p)
で 1/(10-p):(1+p)/(2p-8)/(2p-9)=7:4 から
23p^3-199p+218=0
となったのですがこれを解いてもp=6(予想される解)が出ません。
やり方が違うのでしょうか?

[2の解]
与式をx+yという対称式で表せばならないと思います(多分)。
どうすれば対称式で表せるのでしょうか?

Aベストアンサー

 (1)Cをばらして比を簡略化するところで計算間違いがありそうな気がします。その経過をもう少し詳しく書いてもらえませんか?
 (2)a,b,cを求めるにはまず、x+y=1 を満たすすべての(x,y)で成り立つのですから、x+y=1を満たす(x,y)をまず代入してみてはどうでしょうか。候補としては、(1,0)(0,1)(2,-1)など。
 それから計算されたa,b,c でx+y=1を満たすすべてのx,yで成り立つかどうかを確認するという手順でどうでしょうか?

Qexp{L[1]x+L[2]x^2/2+L[3]x^3/3+…}=F[1]+F[2]x+F[3]x^2+…

フィボナッチ数列F[n]は、
F[1]=1,F[2]=1,F[n+2]=F[n+1]+F[n]
で定義され、リュカ数列L[n]は、
L[1]=1,L[2]=3,L[n+2]=L[n+1]+L[n]
で定義されます。このとき、

exp{L[1]x+L[2]x^2/2+L[3]x^3/3+…}=F[1]+F[2]x+F[3]x^2+…

が成り立つそうなのですが、どうしてなのですか?

右辺は、フィボナッチ数列の母関数と似ていてなんとか求められるのですが、左辺をどうして求めていいかわかりません。

なお、式は
http://mathworld.wolfram.com/FibonacciNumber.html
の(68)を参照しました。

Aベストアンサー

↓ここに証明がありますね。
http://maths.dur.ac.uk/~dma0rcj/PED/fib.pdf
(2.7 A surprising sum を見てください。)

参考URL:http://maths.dur.ac.uk/~dma0rcj/PED/fib.pdf

Qx^n-y^n=(x-y)(x^n-1+x^n-2y+x^n-3y^2

x^n-y^n=(x-y)(x^n-1+x^n-2y+x^n-3y^2+・・・+y^n-1)
となるのはなぜですか?
教えてください。

Aベストアンサー

1+r+r^2+・・・+r^(n-1)=(1-r^n)/(1-r)

r=x/yとおくと

1+(x/y)+(x/y)^2+・・・+(x/y)^(n-1)={1-(x/y)^n}/{1-(x/y)}
故に、
{1-(x/y)^n}={1-(x/y)}{1+(x/y)+(x/y)^2+・・・+(x/y)^(n-1)}

両辺にy^nを乗じて
x^n-y^n=(x-y)(x^n-1+x^n-2y+x^n-3y^2+・・・+y^n-1)

Qx, y∈R がx^2+xy+y^2=6をみたしながら動くときz=x+yの取り得る値の範囲を求めよ。

x∈R より、判別式Dは実数解を持つ(D≧0)を利用しました。
y=z-xをx^2+xy+y^2=6に代入
x^2+x(z-x)+(z-x)^2-6=0
x^2-zx+z^2-6=0
題意より
D=z^2-4(z^2-6)≧0
3z^2-24≦0
z^2≦8
∴ -2√2≦z≦2√2

と解いたのですが、説明不足でしょうか?
不自然な点、補足した方がよい点がをご教授下さい。

Aベストアンサー

試験対策を考えているなら、少し答案の書き方を考えたほうが良いかもしれません。
答案は、基本的に「文章を」書くものです。数式は、その補助に過ぎませんから、
式だけ書きっぱなし(に近い)答案は、求める値だけ当たっていても、評価が低い場合があります。

上の答案は、「題意より」の部分を補って

x^2+xy+y^2=6 に y=z-x を代入すると、x^2-zx+z^2-6=0 となる。
題意より、この方程式は x の実数解を持たねばならないから、
判別式を考えると、z^2-4(z^2-6)≧0 が成り立つ。
この不等式を解けば、-2√2≦z≦2√2 となる。

と解釈される可能性があります。(文章になっていないので、読まずに0点という可能性さえある。)

こう書き直してみると、
-2√2≦z≦2√2 は、実数 x が存在するための必要条件に過ぎないこと、
実数 y が存在するかどうかに関して何も言っていないこと、
の二点について、十分性の怪しい記述になっています。

判別式≧0 であれば実数解 x が存在し、y=z-x によって y も実数である
ことを一言書いておくほうが好いでしょう。
そんなこと言うまでもない、と思ったとしても。

試験対策を考えているなら、少し答案の書き方を考えたほうが良いかもしれません。
答案は、基本的に「文章を」書くものです。数式は、その補助に過ぎませんから、
式だけ書きっぱなし(に近い)答案は、求める値だけ当たっていても、評価が低い場合があります。

上の答案は、「題意より」の部分を補って

x^2+xy+y^2=6 に y=z-x を代入すると、x^2-zx+z^2-6=0 となる。
題意より、この方程式は x の実数解を持たねばならないから、
判別式を考えると、z^2-4(z^2-6)≧0 が成り立つ。
この不等式を解けば、-2...続きを読む

Q「実数x,yについて、x^2-2xy+2y^2-4x+2y+8 の最小

「実数x,yについて、x^2-2xy+2y^2-4x+2y+8 の最小値と、そのときのx,yの値を求めよ。」という問題を解くと、

 解)t=x^2-2xy+2y^2-4x+2y+8 とおき、Xについて整理すると、
    =…={x-(y+2)}^2+y^2-2y+4 
  
  これより、tは、x=y+2 のとき、最小値y^2-2y+4 をとる。

  ここで、g(y)=y^2-2y+4 とおくと、
     
    (省略)

と、この後は、g(y)=y^2-2y+4 を平方完成し、最小値を求めていきますが、このtの式の最小値が、
y^2+Z+4となるtの式が有った場合、tの最小値は、以下の3通りのどれでしょうか?

 (1)y^2+Z+4 → y^2+Z+4 , (2)y^2+Z+4=y^2+(Z+4) より、z+4 ,
 (3)y^2+Z+4=y^2+(Z+4) より、z+4は1次関数なので、最小値はもたない

また、y^2+z^2+4となるtの式が有った場合、tの最小値は、
 y^2+z^2+4 → y^2+z^2+4=y^2+(z^2+4) より、4 

で合っているでしょうか?

「実数x,yについて、x^2-2xy+2y^2-4x+2y+8 の最小値と、そのときのx,yの値を求めよ。」という問題を解くと、

 解)t=x^2-2xy+2y^2-4x+2y+8 とおき、Xについて整理すると、
    =…={x-(y+2)}^2+y^2-2y+4 
  
  これより、tは、x=y+2 のとき、最小値y^2-2y+4 をとる。

  ここで、g(y)=y^2-2y+4 とおくと、
     
    (省略)

と、この後は、g(y)=y^2-2y+4 を平方完成し、最小値を求めていきますが、このtの式の最小値が、
y^2+Z+4となるtの式が有った場合、tの最小値は、以下の3通り...続きを読む

Aベストアンサー

>このtの式の最小値が、y^2+Z+4となるtの式が有った場合

意味不明です。「tの式」を定義してください。


人気Q&Aランキング

おすすめ情報