No.3ベストアンサー
- 回答日時:
No.2 です。
「お礼」に書かれたことについて。>ということで、この問題においては直角三角形を作って答えても問題ないということですかね?
「問題ない」という消極的なものではなく、「積極的にそれを利用して解いている」ということなのでしょう。
#1さんのように「正弦定理」を使うのもよし、「sin」の理解が浅ければ「直角三角形の三角比 + 円周角の定理」を使うのもよし、ということで。
No.4
- 回答日時:
三角形ABCを直角三角形と仮定して求められるのはなぜですか?
それは sin∠ACB と正接を求めるから つまり
孤ABに対する円周角は円周上の点ならばどこでも同じなので
だったら まだ全ての辺の長さの値が出ていなくても
正接を求めるだけなので 三角形ABCを直角三角形と仮定して求めたのが
一番求めやすいからだけです。よって
AC=2・半径=2・5=10 で∠ABC=90° (タレスの定理)だから
sin∠ACB=AB/AC=6/10=3/5
正弦定理だって
a/sinA=b/sinB=c/sinC=2R/(sin90°)
と同じ内容です。定理の本質を理解していたら きっと疑問もわかなかったでしょう!
No.2
- 回答日時:
>三角形ABCを直角三角形と仮定して求められるのはなぜですか?
AC または BC が「直径」でなければ「直角三角形」にはなりません。
何故なら、円に内接する三角形が直角三角形になるには、3辺のうち1辺が「直径」にならないといけないから。
AB = 6 ということは、AB は直径ではありませんから、残りの AC または BC が「直径」にならないと「直角三角形」にはなりません。
お示しの場合には、「弧AB に対する円周角はすべて等しい」ということを利用して、△ABC が直角三角形という特別な場合(AC または BC が「直径」の場合)で∠ACBを求めて、それを任意の C に対して成り立つといっているのでは?
ただし、Cが「A と B の間」にあるときには成り立ちません。
この回答へのお礼
お礼日時:2023/08/17 01:19
回答感謝です。
つまり「円周角の定理」を利用し計算しやすいように直角三角形を作った。ということで
こと問題においては直角三角形を作って答えても問題ないということですかね?
No.1
- 回答日時:
正弦定理を使うと
AB/(sin∠ACB)=2R
R=5, AB=6だから
sin∠ACB=3/5
と解くのが普通だと思います。
この問題でABCがほんとうに直角三角形になるかどうかは、私は確かめていません。が、この種の問題でABCが一般的に直角三角形にはならないとは思います。
R=5、AB=7で同じ問題を作ることは可能だと思います。そして、AB=6のときの三角形が本当に直角三角形なのだとしたら、AB=7のときの三角形は直角三角形にはならないだろうと思います。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・チョコミントアイス
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・あなたの習慣について教えてください!!
- ・ハマっている「お菓子」を教えて!
- ・高校三年生の合唱祭で何を歌いましたか?
- ・【大喜利】【投稿~11/1】 存在しそうで存在しないモノマネ芸人の名前を教えてください
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・家の中でのこだわりスペースはどこですか?
- ・つい集めてしまうものはなんですか?
- ・自分のセンスや笑いの好みに影響を受けた作品を教えて
- ・【お題】引っかけ問題(締め切り10月27日(日)23時)
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・架空の映画のネタバレレビュー
- ・「お昼の放送」の思い出
- ・昨日見た夢を教えて下さい
- ・ちょっと先の未来クイズ第4問
- ・【大喜利】【投稿~10/21(月)】買ったばかりの自転車を分解してひと言
- ・メモのコツを教えてください!
- ・CDの保有枚数を教えてください
- ・ホテルを選ぶとき、これだけは譲れない条件TOP3は?
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・【コナン30周年】嘘でしょ!?と思った○○周年を教えて【ハルヒ20周年】
- ・10秒目をつむったら…
- ・人生のプチ美学を教えてください!!
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
三角形ABCにおいてa=2√3、b=3-√...
-
ある三角形を縮小、または拡大...
-
120度での三平方の定理について...
-
垂心はなぜHで表すのか?
-
外接円について
-
数1余弦定理 三角形ABCにおいて...
-
Hと3本の線
-
数学Ⅰの問題です。 三角形ABCに...
-
この世に「絶対」なんてない。 ...
-
正八角形で・・・・
-
エクセルで文書の改訂記号を作...
-
合同と=の違い
-
底辺が共通な2つの三角形の角...
-
三角形の合同条件
-
1988年 共通一次試験数学の問...
-
複素平面上の三角形の相似について
-
正八角形の三個の頂点を結んで...
-
上辺の長さがa、下辺の長さがb...
-
小学生ができるレベルで、算数...
-
辺の比について
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
垂心はなぜHで表すのか?
-
数学Aについて質問です。 1. 正...
-
エクセルで文書の改訂記号を作...
-
三角形折りの卓上札に両面印刷...
-
正八角形で・・・・
-
合同と=の違い
-
Wordで三角柱を作成したいので...
-
正八角形の三個の頂点を結んで...
-
三角形ABCにおいてa=2√3、b=3-√...
-
ベクトルの重心
-
この世に「絶対」なんてない。 ...
-
四角形の重心の求め方の定義名
-
高校教科書の問題
-
三角形ABCと三角形DEFの重心は...
-
三角関数で分からない問題があ...
-
三角形ABCの辺BCを4 : 3に内分...
-
算数の得意な方お願いします
-
数学Iの問題
-
「平面上に三角形OABがあり、OA...
-
ヘロンの公式って、3辺が整数で...
おすすめ情報
No.2の回答者様へ
申し訳ございません。お礼の誤字についてですが
「こと問題」ではなく「この問題」です