
No.2ベストアンサー
- 回答日時:
高校生ならば「転換法」は知らなくて良いと思いますが、簡単に説明しましょう。
転換法というのは「一群の命題(真である命題)があって、これらの命題の仮定が独立で全ての場合を尽くし、これらの命題の結論は互いに独立である場合、これらの命題の逆は真である」ことを利用した証明方法です。小学生でも分かる具体的な例はすぐには思いつきませんが、例えば、(1)鋭角三角形ならば最長の辺の平方は他の2辺の平方の和より小
(2)直角三角形ならば最長の辺の平方は他の2辺の平方の和に等しい
(3)鈍角三角形ならば最長の辺の平方は他の2辺の平方の和より大
この3つの命題は真です。このとき、(1)~(3)の逆は真です。
転換法の使い方は、例えば(1)の逆である、
「最長の辺の平方が他の2辺の平方の和より小となる三角形は鋭角三角形である」ことを証明するのに、背理法の仮定を用い、「鈍角三角形または鋭角三角形である」と仮定して矛盾を導くというものです。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
数学で出てくる十分性と必要性...
-
命題の真偽の問題で 命題〇〇に...
-
高校数学、論理
-
数1の命題と条件という章の 必...
-
a>0、b>0⇔a+b>0、ab>0
-
高校数学 ドモルガンの法則につ...
-
必要十分条件と命題の違いがわ...
-
カントールの対角線論法につい...
-
すべて、ある、について
-
数学の背理法について質問です...
-
何時間 何分 何秒を記号で表...
-
鋼材について
-
履歴書で証明写真を提出した次...
-
図面に使う記号? 円を十字で区...
-
皆さん定義を教えてください 「...
-
数学の証明問題で、「証明終了」...
-
【数学】なぜθ(シータ)が角度を...
-
数学の問題で丸に真ん中に線が...
-
力*距離 (仕事) が変速にお...
-
数学のハット、キャレットの意...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
数学の背理法について質問です...
-
a,bが有理数として√6が無理数を...
-
有理数を文字置き→互いに素な整...
-
高校数学です!m,nを整数とする...
-
n=3の倍数ならば、n=6の倍数で...
-
数学B漸化式です。 a1=1/5, an+...
-
強い仮定、弱い仮定、とは
-
nは自然数 n^2と2n+1は互いに素...
-
背理法について
-
a>0、b>0⇔a+b>0、ab>0
-
「逆もまた真なり」について
-
数学で出てくる十分性と必要性...
-
命題論理に関する英単語
-
カントールの対角線論法につい...
-
ウェイソン選択課題について悩...
-
xは実数とする。次の命題の真偽...
-
数独 次の一手を教えてください
-
命題「PならばQ」でPが偽ならば...
-
命題の問題がわかりません・・...
-
pならばqである の否定について
おすすめ情報