
こんにちは。
「数列(An)が有界でない⇔すべてのk(自然数)について|An|>=kである部分数列(An)が存在する」を示す問題です。
<自分で考えた解答>
"→"
数列{An}が有界であると仮定すると、
ある正数Mが存在し、任意の自然数nに対して
|An|<M
が成立する。
よって、矛盾するので、有界でないとなる。
"←"
すべてのk(自然数)について
|An|>=k
である部分数列(An)が存在する・・・(1)とすると、
有界であるのとき、
「すべてのk(自然数)について
|An|<k
である部分数列(An)が存在する」
ので、(1)の条件は有界でない。
以上より必要十分が示せた。
<質問>
(1)この解答で、部分数列についての扱いがわからないので、解答にどうつなげていくのか?
(2)背理法で解答するべきか?背理法以外の方法はないのか?
これについてアドバイスお願いします!!
No.3ベストアンサー
- 回答日時:
「有界でない」の定義はご存知ですか?
知っての通りそんなものはありません。
つまり方法として「有界」と示すしかないので、背理法(つまり対偶を用いた証明)を使うしかないのです。
A=数列(An)が有界でない
B=すべてのk(自然数)について|An|>=kである部分数列(An)が存在するとしましょう。
「有界でない」は証明できないので論理の対偶を取り
ⅰ. A⇒B の対偶 ¬B⇒¬A
ⅱ. B⇒A の対偶 ¬A⇒¬B
を示します。
※注意 Bは 「∀k、∃An、|An|>k」 なので
¬B=「∀An、∃k、|An|<k」 である。
ⅰ ¬Bの条件
「どんな部分列Bnをとっても|Bn|<kとなるkが存在する」
を用いて
An自身を部分列Bnとすれば¬Aが成立する。
ⅱ ¬Aの条件
「全てのAnに対して、|An|<M となるMが存在する。」
を用いると、もちろん
どのようなAnの部分列をとっても成立してますね。
故に¬Bが成立
以上で証明終わりです。Lovechild0さんは(→)の証明で
¬A⇒B が矛盾するので A⇒B
としています。これは間違いです。正しくは
¬A⇒B が矛盾するので B⇒A
なので(→)と(←)が全く同じことを言ってます。
教授たちは非常に敏感なので対偶のとりかたには慎重になってください。
No.2
- 回答日時:
こんにちは(^^)
回答ではないのですが、アドバイスをさせてください。
"→"をおそらく背理法で考えようとされたと思うのですが、
背理法になってないと思います…。
http://www.geisya.or.jp/~mwm48961/koukou/cond004 …
↑このページの中ほどを頭にやきつけてください。
ANo.1の補足の「…」も間違っていますので、もう一度、
数列が有界であることの定義と、部分列の定義を確認されてみてください。
この回答への補足
「すべてのk(自然数)について|An|>=kである部分数列(An)が存在する」を「あるk(自然数)について|An|<kである部分数列(An)が存在する」として考えると背理法でできますね!ありがとうございます!
補足日時:2007/05/20 18:59No.1
- 回答日時:
はげしく間違っています。
とりあえず、数列 (A_n) と部分列 (A_n) が設問からして混乱しているので、部分列の方は (A_n(j)) 等、区別しましょう。
それから「すべてのk(自然数)について|An|>=kである部分数列(An)が存在する」の主張もちょっとおかしいので設問を見直しましょう。
この回答への補足
返答ありがとうございます。
「すべてのk(自然数)について|An|>=kである部分列(Ank)が存在する」と直しました。部分数列と数列の違いでどのように考え方がかわるのか教えてもらえないでしょうか?
まだ勉強し始めで、基本的な問題かもしれませんが行きずまってます><
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
数学で出てくる十分性と必要性...
-
命題の真偽の問題で 命題〇〇に...
-
高校数学、論理
-
数1の命題と条件という章の 必...
-
a>0、b>0⇔a+b>0、ab>0
-
高校数学 ドモルガンの法則につ...
-
必要十分条件と命題の違いがわ...
-
カントールの対角線論法につい...
-
すべて、ある、について
-
数学の背理法について質問です...
-
何時間 何分 何秒を記号で表...
-
鋼材について
-
履歴書で証明写真を提出した次...
-
図面に使う記号? 円を十字で区...
-
皆さん定義を教えてください 「...
-
数学の証明問題で、「証明終了」...
-
【数学】なぜθ(シータ)が角度を...
-
数学の問題で丸に真ん中に線が...
-
力*距離 (仕事) が変速にお...
-
数学のハット、キャレットの意...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
数学の背理法について質問です...
-
a,bが有理数として√6が無理数を...
-
有理数を文字置き→互いに素な整...
-
高校数学です!m,nを整数とする...
-
n=3の倍数ならば、n=6の倍数で...
-
数学B漸化式です。 a1=1/5, an+...
-
強い仮定、弱い仮定、とは
-
nは自然数 n^2と2n+1は互いに素...
-
背理法について
-
a>0、b>0⇔a+b>0、ab>0
-
「逆もまた真なり」について
-
数学で出てくる十分性と必要性...
-
命題論理に関する英単語
-
カントールの対角線論法につい...
-
ウェイソン選択課題について悩...
-
xは実数とする。次の命題の真偽...
-
数独 次の一手を教えてください
-
命題「PならばQ」でPが偽ならば...
-
命題の問題がわかりません・・...
-
pならばqである の否定について
おすすめ情報