原子は、原子核と電子から構成されていますね。それらは、プラスとマイナスの電荷を持っていますね。それなのに何故、原子核と電子は衝突してしまわないのでしょう。素粒子の実験では、加速器という装置を使って、素粒子同士をぶつけることができるそうですが、このような衝突が何故、原子の中で起こらないのでしょうか。みなさん、よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (21件中1~10件)

stomachman さんの言われるように,20世紀初頭の大難問でした.



1911 年にラザフォードが原子核+電子という模型を提出して以来,
1913 年のボーアの量子仮設などを経て,1926 年にシュレーディンガーが
水素原子のシュレーディンガー方程式の解を示したのが最終解決ですね.
3人ともノーベル賞を受けています.
ラザフォード・・・・・・・・1908年,ノーベル化学賞
ボーア・・・・・・・・・・・1922年,ノーベル物理学賞
シュレーディンガー・・・・・1933年,ノーベル物理学賞

○ 前期量子論風に簡単にやってみましょう.
電子が陽子の周囲を半径 a の円軌道で回っているとして
(本当は回っているわけではないが...)
陽子-電子間のクーロン引力が e^2/a^2
(4πε0 がついていないのは cgs 非有理化単位系を使っているから)
遠心力が maω^2 (ωは回転の角速度),
両者が釣り合うから
(1)   e^2/a^2 = maω^2
速度は v = aω で,運動量 p は
(2)   p = mv = maω
stomachman さんの言われる電子波の波長λは,
ド・ブロイ(これも1929年のノーベル物理学賞)の関係式(1924年)で
(3)   λ = h/p
h はプランク定数.
円軌道一周が 2πa の長さですから,これが波長λの整数倍でないと
一周したときに波の頭としっぽがずれてしまう.
(4)   2πa = nλ  (n は自然数)
で,(1)~(4)から,簡単に
(5)   a_n = n^2 h^2 / 4π^2 m e^2
で,円軌道の半径が h^2 / 4π^2 m e^2 の n^2 倍しかとれない,
というようになっているのがわかります.
n = 0 では電子波がなくなっちゃいます.
エネルギー E_n は,運動エネルギー mv^2 = ma^2 ω^2 と,
クーロン力のポテンシャルエネルギー -e^2/a (負号は引力だから)の和で,
(6)   E_n = - 2π^2 e^4 m / n^2 h^2
で,これも離散的な値を取ります.
stomachman さんの E = mc^2 は何か誤解されているようですね.
エネルギーが E_n で量子化されていますから,
状態間を移るためにはそのエネルギー差の出し入れが必要なです.
それが電磁波のエネルギー hν になっているので,
吸収や放出する電磁波の波長は特定のものしかあり得ません.
ここらへんは stomachman さんの言われるとおり.

○ 上の前期量子論風の話は,きちんとした量子力学の定式化の話からすると
まずいところがあれこれあります.

○ ド・ブロイの波長の話は大分後の話で,前期量子論では作用積分の量子化
という議論になっていました.

○ もうちょっと簡単に言うなら,
電子が陽子の場所に落ち込んで動かなくなってしまうと,
場所が決まり運動量も決まってしまうので,
ハイゼンベルクの不確定性原理に違反する,という言い方も出来ます.

○ エネルギーが離散的な値を取るのは束縛状態(E < 0)だけで,
非束縛状態(散乱状態)の E > 0 では,エネルギーが連続的な値をとります.
量子力学では何でもエネルギーが離散的というわけではありません.
よく誤解されるようですが,量子力学という名前が悪いのかな?
加速器で陽子を原子核に打ち込むような話では,
陽子のエネルギーは連続的に取り得ます.

○ 加速器でよく使われるのは,
陽子や重陽子(重水素の原子核,陽子1個+中性子1個)や
α粒子(ヘリウム4の原子核,陽子2個+中性子2個)を
標的の原子核に打ち込むというものです.
標的がうまく取り込んでくれれば,原子番号が1か2大きい原子核ができます.
超ウラン元素のはじめの方はこのようなやり方で作られました.
後の方の元素はクロムイオンを鉛原子核にぶつけるなど,しています.
陽子も原子核も正電荷を持っていますから,クーロン反発力があります.
十分距離が近づけば核力の引力が作用しますが,そこまでクーロン反発力に逆らって
近づけるために加速器で加速するのです.

この回答への補足

回答、ありがとうございます。
新たな疑問が、わいてまいりました。もしよろしければ、参考になるアドバイスがほしいのです。
原子核に電子が落ち込まないことの説明に、不確定性原理を使うことができるようですが、加速器での衝突の時、素粒子同士がぶつかるのは不確定性原理に違反してはいないのですか(私の不確定性原理の理解が、あやふやの可能性があるのですが)。

補足日時:2001/02/04 17:10
    • good
    • 1

質問と離れてはいけないので短めにしておきます。



>ちょっと下手すりゃ、絞った積もり、ぶつけた積もり、になっちゃいそう。
一応、加速器のリング中にはビーム幅や位置を見るためのモニターがあります。
あとは、絞れてなかったりすると得られるデータ数が明らかに減ってしまいます。
そのときは加速器の方が微調整をしてくれます。

>安定な細いビーム
ほとんどは siegmund さんが説明をされている通りです。
あとは、安定といってもビームの寿命は 100sec ほどです。
また、やはり効いているのはクーロン反発ですね。
パウリ原理が効くほど密度の高いビームが作れれば実験もすぐに終わるのでしょうけれど、、、
    • good
    • 1

> 原子核の所に少しでも存在確率があるのは問題じゃ?



そういうのは衝突とは言わないようです.
衝突という表現は(半)古典的概念で,
量子力学と両立させるなら,波束をつくって,
2つの波束が(ほぼ)同じ位置に来たときに衝突というのでしょう.
水素原子の定常電子軌道では,ボーア半径のあたりに電子の存在確率が大きいわけで
これだと単純な波束概念にはならないので,仕方なしに「電子が回っている」
と言っているのです.
でも,「電子が回っている」という表現は誤解を招きやすい.
例えば,s軌道なら角運動量ゼロですが,
「回っている」なら角運動量がありそうと思われてしまう.

> 原子核の体積が見える位近づいたあたりから、
> 存在確率が下がって0になっちゃうんだろうと思います。

そうはなりません.
点電荷のポテンシャルがお気に召さなければ,
半径δの球内に一様に電荷が詰まっているようなモデルのポテンシャルを
取ることもできます.
これだと,ポテンシャルは
r > δ なら -e^2/r
r < δ なら -e^2(3δ^2 - r^2)/δ^3
です.
2つの領域でそれぞれシュレーディンガー方程式を解いて,
r = δ のところで,波動関数を接続することになります.
ちと面倒ですからやりませんが,
原点でも波動関数はゼロにはなりません.
この種の問題で波動関数がゼロになるのは,
ポテンシャルが正の無限大のところに限ることが知られています.

上のことは,p軌道やd軌道で原点の波動関数がゼロであることの
理由にもなっています.
s軌道以外ですと,
波動関数を動径部分と球面調和関数に分離して動径部分の方程式を作ったとき,
遠心力ポテンシャル L(L+1)/r^2 が出てきます(係数は省いている).
遠心力ポテンシャルは r→0 でクーロンポテンシャル -e^2/r にうち勝ち,
原点でポテンシャルが正の無限大になります.
このような理由で,s軌道以外では原点で波動関数がゼロです.
s軌道なら L=0 だから,L(L+1)/r^2 は効きません.
    • good
    • 0

siegmund先生< しつこくて申し訳ございません。



●フェルミコンタクト
> 陽子の半径は 0.8×10^(-15) [m] 程度,
> ボーア半径は 0.5×10^(-10) [m]
> ですから,事実上問題にならないでしょう.

なるほど。でも
> 何故、原子核と電子は衝突してしまわないのでしょう

というのがbigseaさんの御質問ですから、原子核の所に少しでも存在確率があるのは問題じゃ?
 stomachmanのカンとしては、原子核の体積が見える位近づいたあたりから、存在確率が下がって0になっちゃうんだろうと思います。

●磁場があっても一緒
 2つに一つで言ってみたんですがハズレでした。磁場は効かない。ボソンは縮退できる、ということがホントに本質的なんですねえ。1個だとフェルミオンもボソンも関係ない。

●nmのビーム
 粒子速度の揃った細いビームと一緒に飛ぶ座標系から見れば、電子気体の温度が低いんじゃないかと思ったのですが...熱いとすぐ広がってしまうでしょうから。だとすると、この座標系で見てそれぞれの粒子のΔpは結構小さいのでは?という疑問でした。(「Δpが小さい」はやっぱりスカタンのような気がしています。)電子気体は心配するほど冷たくないのかも知れませんし、或いは熱い電子がビームからどんどん飛び出して、自発的に蒸発冷却するのかも知れません。
 相対論的効果で、ビームの広がるのが遅くなるだろうとは思います。どうやら、いろいろな要素が絡んでいて簡単にはわからないもののようですネ。
    • good
    • 1

> おおっと、もうおしまい?



いやいや,閉めるのは私じゃありません.

もっと難しくなってきましたね(^^;)

○ フェルミの接触相互作用の話
数学的には stomachman さんの言われるとおりですが....
陽子の半径は 0.8×10^(-15) [m] 程度,
ボーア半径は 0.5×10^(-10) [m]
ですから,事実上問題にならないでしょう.
ρ=r/a_0 と無次元化した距離で見て(a_0 はボーア半径)
例えば,L殻(n = 2)のs軌道は,ρ依存性が
(1)  ψs ~ (2-ρ)exp(-ρ/2)
p軌道は
(2)  ψp ~ ρexp(-ρ/2)
陽子表面で ρ~10^(-5) ですから,
存在確率 |ψ|^2 ではsとpの両者で 10^10 くらい違ってしまう.
したがって,事実上s電子しか接触相互作用には効かない.

ただし,鉄属のd電子はs電子との相互作用を通してフェルミの接触相互作用に
影響を与えていることが知られています.

○ フェルミオンかボソンか
非相対論的枠組で議論する限り,1粒子状態には違いは出ません.
磁場の効果は,運動量pをp-eA/c に変える(A は磁場のベクトルポテンシャル)ことと,
HS のゼーマン項(Sはスピン)をハミルトニアンに付与する,
の2つです.
だから,フェルミオンかボソンかは1粒子状態を作ることには関係ありません.
もちろん,スピン 1/2 のボソンはないわけで,そういうことは話が別です.

○ ビーム
こういう話は専門じゃないんですが...
速度のばらつきが少ないのというのは,
送り出したたくさんの粒子についての速度のばらつきであって,
不確定性原理のΔpとは無関係でしょう.
つまり,たくさん波束を送り出した.
その波束の形がそろっている,というわけです.
一つの波束を作るために必要なpの範囲がΔpで
一つの波束の広がりはΔp と不確定性関係から決まるΔx です..
極低温はなにか誤解されているようです.

パウリ原理とクーロン反発は言われるとおりと思いますが,
あとはビームの粒子密度(or 波束密度)の問題ですね.
波束が重ならないようだったらパウリ原理は関係がありませんね.
クーロン反発は相互作用が長距離だからもっとシビアな気がします.
    • good
    • 0

stomachman自分つっこみです。


↓の、細いビームに絞る話に関する便乗質問で:
> だって荷電粒子が集まれば相互に反発するでしょう?
それどころか、安定な細いビーム->速度のばらつきほとんどなし->極低温->Δp~0 ->不確定性原理でΔx>>h -> 波束がうんと広がる->ビームが狭いから粒子同士の波束が重なる-> 粒子がフェルミオンだったらパウリの排他則でかたまって居られない... ってことになっちゃいませんか?真空中じゃクーパー対にもならないだろうし.....でもぶつけているのはボース粒子に限らないようだし....。謎が深まってしまいました。
    • good
    • 0

おおっと、もうおしまい? だったら、閉まる前に便乗しちゃおう。



●s軌道。この質問に於いてはカナリ重要ですよね。んで、siegmund先生の
> (1)   ψ(r) = 2 (1/a_0)^(3/2) exp(-r/a_0)
これって、原子核のサイズを無限小とみなして出てくる式じゃないのかなあ?ですから、原子核のホントに近くだとちょっと逸脱していそう。そのあたりのちょっと外でψ(r) ~ 2 (1/a_0)^(3/2) だとして、一方、磁気モーメントを持つ原子核の場合、双極子の特異点まで行かなくたって~1/r^2 の因子がありそう。だからr=0で(1)式右辺が有限であることは、フェルミ接触相互作用にとって必須ではないような気がしたりしてますが、いかがなもんでしょう。

●電子がフェルミオンかボソンかによって、計算上違いが出ないのは、(1)周囲に磁場がない。(2)電子1個だけ。という条件だからですよネ?水素分子になれば共有結合だからボソンて訳にはいかない。のかな?あれ?

●guiter先生のビームをnmに絞る話。スッゴイですよね。ちょっと下手すりゃ、絞った積もり、ぶつけた積もり、になっちゃいそう。どうやって?はここで尋ねると大変そうですからパス。でも安定に細くなるもんでしょうか?だって荷電粒子が集まれば相互に反発するでしょう?(ってこれでも大変か...)
    • good
    • 0

> なんだか話が凄いとこまで行っちゃって...


> この質問をこのまま開けておくと原子構造の教科書ができあがっちゃいそうです

ちょっと調子に乗りすぎました.
もうおしまいにします.

「アマチュア科学者」白揚社,面白そうですね.
私も買ってこよう.

> 放射線が危ないという批判をものともせず実践した読者は相当数いたんじゃなかろうか。

霧箱で自然放射線はともかく,手作りヴァンデなんて大丈夫かな?
1950年代はまだ放射線の危険度認識が甘かったですからね.
そういえば,マリー・キュリーも
娘のイレーヌ・キュリー(ジョリオ・キュリー夫妻の奥さん)も
白血病で亡くなっています.

> ニュートリノ実験用プールとシンクロトロンをあしらったガーデニング

庶民には(じゃなくても)無理ですよ~.
    • good
    • 0

なんだか話が凄いとこまで行っちゃって...この質問をこのまま開けておくと原子構造の教科書ができあがっちゃいそうです。

ホェ~

さて、全くの余談でございますが:
> 素粒子の実験では、加速器という装置を使って
 実はご家庭でこの実験をやることも不可能ではないようです。
 これまでの議論にもちょっと出てました核磁気共鳴(NMR)。その実験装置の自作法が米国の一般向け科学雑誌Scientific American誌に1950年代に連載された記事The Amateur Scientistで解説されてた、と聞いてstomachman邦訳を手に入れましたよ。「アマチュア科学者」白揚社 です。(残念ながら核磁気共鳴実験装置は「省きました」って、がっくり。)
 それはさておき、その記事の中に「趣味の原子物理実験」が載ってました。
・ピーナツバターの瓶やトイレ用のゴムの「きゅっぽん」で霧箱を作る。霧箱に磁場を掛けて自然放射線の霧箱写真を撮ろう!
・空き缶とゴムベルトで、35万ボルトを発生するヴァンデグラフ装置を作ろう!
・この高電圧を使った静電型加速器を作って、原子核をぶち壊そう!
てな調子で工作上の細かいコツまで懇切丁寧に解説されてます。すべてdo it yourself。図面は無くて「絵」が載っています。手製装置による粒子シャワーの霧箱写真も載ってます。

 放射線が危ないという批判をものともせず実践した読者は相当数いたんじゃなかろうか。ともあれ広いガレージや地下室のあるおうちがうらやましいですね。ニュートリノ実験用プールとシンクロトロンをあしらったガーデニングができるようなのがいいなあ....
    • good
    • 0

siegmund です.



○ ryumu さん
> 結局は電子の波動性ですか・・・。

おっしゃるとおりと思います.

○ bigsea さん
> 加速器での衝突の時、
> 素粒子同士がぶつかるのは不確定性原理に違反してはいないのですか.

素粒子同士がぶつかって,クォークの組み換えが起こり,
違う素粒子になって飛び去ってゆくのでしたら大丈夫ですね.
そこらへんは guiter さんの書かれているところをご覧ください.
例えば,陽子を何かの原子核に打ち込んでうまく一体になったら,
なんだか不確定性原理に違反するような気がします.
実は,原子核の中の陽子と中性子も一点に静止しているわけではなくて,
原子核内で(いわば)動き回っています.
そういうわけで,不確定性原理には違反しません.

○ bigsea さん
> s軌道で、原子核にも電子の存在確立があるって不思議な感じがします

私も不思議な気がします.
ただし,事情は非常に微妙でして,例えば水素原子の1s軌道の波動関数は
(1)   ψ(r) = 2 (1/a_0)^(3/2) exp(-r/a_0)
です.a_0 はボーア半径.
で,存在確率が |ψ(r)|^2 ですから,(1)からすると |ψ(0)|^2 が有限で
原点(原子核の位置)でも存在確率があるように見えます.
ただし,ある体積(球殻 r~r + dr としましょう)で電子を見いだす確率は
体積要素 4πr^2 dr をかけないといけません.
で, |ψ(r)|^2 4πr^2 は r=0 でゼロになってしまいます.
そうすると,motsuan さんの言われたフェルミの接触相互作用は大丈夫?
この相互作用の元になっている機構は,
原子核の磁気モーメントが双極子型磁場を作り,
その磁場を電子の磁気モーメントが感じるという仕組みになっています.
で,双極子型磁場の原点での特異性のところからちょうど 1/r^2 が出てきて
体積要素の r^2 とキャンセルし,
フェルミ接触相互作用が |ψ(0)|^2 に比例した有限の大きさで求められる,
という本当に微妙な状況になっています.
こういうわけで,motsuan さんの書かれているように
核磁気共鳴の情報から電子の |ψ(0)|^2 の情報がわかります.
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q電子レンジの遮蔽網の穴の大きさ

電子レンジの遮蔽網の穴の直径は約6cmだそうですが
(http://www.ktv.co.jp/ARUARU/search/arumicrowave/microwave2.htmより)

遮蔽網の穴の直径が6cmでよい理由を知りたいです。

c =f・λをベースにして

 光速(c)=3.00×10^8m
 電子レンジ周波数(f)2.45×10^9Hzを代入して
 電子レンジ内のマイクロ波の波長が約12cm

ということは想像できるのですが

1.光が 1/2波長以下であれば透過しないということなのでしょうか?
2.だとすれば、なぜ1/2波長以下ならば透過しないのでしょう?
3.そもそも「C=f・λをベースにする」という考え方は正しいですか?

以上よろしくお願いします。

Aベストアンサー

私が疑問に思ったのは25年ほど前、電波天文学の本で電波望遠鏡のチキンネットアンテナを見たときでした。(ニワトリ小屋の金網なんかで、電波が反射できるのか? 中学生でも無線に詳しい人は多かったが、さすがにこれに答える人はいなかった)

「穴径:1/2波長」を理解するには、波動学とか電磁気学とかいろいろ理解しなくてはならないと思います。
まず電磁波の入門書としては、講談社:ブルーバックスの「アンテナの科学」が良いでしょう。 穴径の話は出てきませんが、電波とか指向性とかを理解するのに適しています。 アレイアンテナも載っています。
ただシミュレーションが波の形そのものだったり、縦書きだったり(書評を書くと厳しくなってしまう。 読み返してみたらkoyuki2001さんの気にしている c=f・λ の式さえ載っていない)

空気中の電波の速度は、光速定数と同じなのでc=f・λは使えますよ。

Q高校の原子分野についての質問です。 原子核反応において、原子核同士を衝突させたときと原子核に中性子等

高校の原子分野についての質問です。

原子核反応において、原子核同士を衝突させたときと原子核に中性子等の粒子をぶつけたときの反応は違うものなのでしょうか??

教えてください

Aベストアンサー

No.4です。ちょっと用語の使い方が適切ではなかったかもしれません。
鉄より軽い元素が「核融合」で作られると書きましたが、鉄より重い元素も「核融合」で作られます。
その意味で「鉄より軽い元素は、発熱反応の核融合」で作られ、「鉄より重い元素は、吸熱反応の核融合」で作られる、と書くべきなのでしょう。

学問的に正確に書くとどうなるのか、ちょっと自信がありません。とりあえずイメージ的な話として書きました。
「正確」に知りたければ、その筋の「書籍」なりを読んでください。

Q電子ペーパーについて

最近製品に使われ始めた電子ペーパーについて。
電子ペーパーはペーパーというだけあって紙のようにぐにゃぐにゃ曲げることができるのでしょうか?
ある程度は曲げられるが、紙みたいに直径の小さいロール状に巻いたりはできないのでしょうか。
また、折り曲げたら終わりでしょうか?

Aベストアンサー

これのことでしょうか。
http://www.itmedia.co.jp/news/articles/0507/13/news028.html

ぐにゃぐにゃ曲げることは問題ないみたいですが、直径の小さいロール状とか、折りたたんだりとかはできないみたいです。
曲げても折り目がつくだけで機能には問題ないとの話を聞いたこともありますが、聞いただけですので自信なしにしておきます。
個人的には、表示を保持するのに電源を必要としないというところが画期的と感じます。

参考URL:http://www.itmedia.co.jp/news/articles/0507/13/news028.html

Q奇数の原子量を持つ原子核はなぜ核分裂を起こし易いのか?

U235やPu241の奇数の原子量を持つ原子核は、偶数のそれに比べて、なぜ核分裂を起こしやすいのでしょうか?

Aベストアンサー

>「量子力学の基本方程式を正確に解いて明らかにすることは極めて困難

それは、当然のことです。殻模型は、一体近似(平均場)であり、あくまでも、殻の安定性を簡単に説明するための、一つのモデルにすぎません。しかし、スピン軌道相互作用を考慮することにより、質量数が偶数の核の方が奇数の原子核よりも安定だということが分かります。

>魔法数が、核分裂を起こし易いのと深い関係があるのでしょうか

魔法数が直接核分裂と関係するわけではありません。核の安定性の議論をするために、魔法数を持ち出したにすぎません。核分裂はあくまでも、核の安定性に関わる問題なのです。核の安定性を論議するには、殻模型が理解しやすい、と云うことです。

>ワイツゼッカー と ベーテ の 公式でZ=偶数、N=偶数のときに、結合エネルギーが大きいのか不明です。

当然のことです。だから、「半経験公式」というのです。液滴模型では、非対称エネルギーの項とペアエネルギーの項の導出過程が明らかになっていないですからね。だから、「殻模型で考えてみては?」とお薦めしているのです。

Q「ゆたぽん」を温める電子レンジの大きさは?

電子レンジで温める普通サイズの「ゆたぽん」を購入したいのですが、我が家のレンジの大きさで使えるかどうか心配です。電子レンジの中の回転皿は直径26cmしかありません。「ゆたぽん」が大きすぎたら2つ折りにして温めたりできるのでしょうか?教えてください。

Aベストアンサー

私は白元のゆたぽんで、本体サイズ(箱に書いてある)が18x27cmの物を使っています。
箱には18x27とありますが、実際の暖まる部分は14x20cm位です。
ゆたぽん自体がビニールの袋に入っており、その袋にはレンジから取り出すときに掴む部分があるため、27cmとあります。
なので回転皿が26cmあれば使えると思います。
二つ折りは出来ないです。結構厚みがあるので。
ケーキなどを買うと付いてくる保冷剤を大きくした感じの物です。
(もちろん中身は保冷剤ではないと思いますが。)

袋にも書いてありますが、外袋は破いて中身を取り出して使うような感じですが、破かずにそのまま使うので注意してください。

Q電子はなぜ原子核に落下しない?

素朴な疑問です。
原子核はプラス、電子はマイナス。なのになぜ電子は原子核に落下しないのですか?

Aベストアンサー

http://oshiete.goo.ne.jp/qa/36150.html?order=asc
参考まで

Q電子レンジの回転皿(耐熱ガラス)について

東芝製品の電子レンジ(品番ER-V33)を使用しています。古い機種ですがまだ十分使えます。その電子レンジのガラス回転皿(耐熱ガラス)を誤って割ってしまいました。直径26cmです。市販で代用出来るものは販売しているのでしょうか?品番等教えて頂ければありがたいです。よろしくお願い致します。

Aベストアンサー

メーカーから専用のものか 代用可能なものを手配してもらうというのはNGなのでしょうか?

どのメーカーも回転皿だけ単品で 店頭には置いてないので同じ結果だと思うのですが
(メーカーに問い合わせて同じサイズのものを購入したことがあります)
http://www.toshiba.co.jp/csqa/contact/cs/tha-contact_j.htm#buhin

Qどうやって電子が原子核の周りを回っていることがわかったのですか?

電子が水素の陽子のまわりを回っていることを発見したラザフォードの記事を読みました。が、どうやって「発見」したのかがわかりません。実際に顕微鏡で見たのでしょうか?

Aベストアンサー

はじめ、トムソンは正負の電荷が一様に分布しているという原子模型である理論を形成し、ある結論を得ていました。

しかし、原子にα線を打ち込むと、入射α線に対して90゜もの方向の散乱も発生することがわかりました。

これを説明はすることはトムソン模型では困難でラザホードにより、正電荷が中心部に集中したモデルが考えられ、理論計算をすると散乱の方向分布がピッタリと説明できたということです。

正電荷が中心に固まっていれば電子はその周りにしかありません。止まっていれば原子核に落ちるので回っていることになりました。

したがって、ラザホードは直接「電子が水素の陽子のまわりを回っていることを発見した」わけではありません。正電荷が原子核の中心に集中していることを発見し、理論を構築したのです(アイデアを理論計算したのは別の人だったと聞いたことがあります)。

ただし、電磁気学の結論では電荷が加速度運動をすれば電磁波を放射してエネルギーを失い原子核に落ちるため、この矛盾解決は量子論に委ねられたのだった。

参考URL:http://www2.kutl.kyushu-u.ac.jp/seminar/MicroWorld/Part2/Part2.htm

はじめ、トムソンは正負の電荷が一様に分布しているという原子模型である理論を形成し、ある結論を得ていました。

しかし、原子にα線を打ち込むと、入射α線に対して90゜もの方向の散乱も発生することがわかりました。

これを説明はすることはトムソン模型では困難でラザホードにより、正電荷が中心部に集中したモデルが考えられ、理論計算をすると散乱の方向分布がピッタリと説明できたということです。

正電荷が中心に固まっていれば電子はその周りにしかありません。止まっていれば原子核に落ちるの...続きを読む

Q電子レンジ

電子レンジからの電磁波の漏れが起こる理由を教えて下さい。波長が12センチもあるので、たとえ隙間があってもその隙間の大きさ(直径)が12センチ以下であれば漏れないと単純に思ってしまうのですが・・・。波長と漏れとは無関係なのでしょうか?よろしくお願いします。

Aベストアンサー

漏れは、金属の無い部分からだけではありません。

仮定として
筐体の金属の抵抗値が高くて導電性プラスチック程度だとすると、
波長の長さに関係なく、電磁波を通します。
実際は、
電子レンジの筐体は、そこまで高くはありませんが、
励起しようとする方から見れば、電気抵抗がけっこう高いのです。

Q原子の質量から原子核の質量を求めたい。

タイトルの通りですが、どのように考えればよいのでしょうか。ちなみに知りたいのはガドリニウムGd 質量数156
原子番号64 原子質量157.25amu
1amu=1.66*10^-27です。

Aベストアンサー

155.922123±3 [amu] らしいです。

考え方は、
陽子 1.00727647 [amu] × 64個
中性子 1.0086649 [amu]× 92個
質量欠損 8215.368[keV]×156
を足せばいいのかな。

参考URL:http://ie.lbl.gov/toi2003/Mass.asp?sql=&A1=156&A2=156&Zmin=64&Zmax=64&sortby1=A&sortby2=Z&sortby3=N


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報