ネットが遅くてイライラしてない!?

有理数の集合の測度が0であることの証明は
http://oshiete1.goo.ne.jp/qa3714410.html
が定石だと思うのですが、その証明の過程で起こってることがとっても不思議です
「稠密な集合の1点1点を幅のある区間で覆っている」のに、Rを覆えないどころか、区間の幅の和がいくらでも小さくなっちゃうなんて。。。

このことについて、「なるほど~」と思える解説を教えてください
(集合の濃度にはあまり触れずにおねがいします)
よろしくおねがいします

A 回答 (2件)

#1です。



> うーん、集合和を有限で止めている覚えはないんですけど。。。

なるほど、質問の意図を読み違えていました。

> だからRを覆っているということはないはずです。

あまり、触れないように避けたのですが、Rって、実数集合のことだったんですね。
Rationalかと思ったのですが、有理数は、普通Qでしたよね。
たしかに、Rは、覆っていませんでした。

Rを覆っていないというのは、どんどん小さくなっていく加算無限の区間列の和集合に含まれないような実数が、どこかわからないけど、存在するといったイメージでしょうが、
実際、区間列の生成方法をうまく決めれば、そのような実数を探し出すことができそうな気がします。

そのような実数があったとして、その実数の近くのどの有理数をとっても、
その有理数を含む区間は狭すぎて、その実数を含まない状況になっていると想像できます。

専門家でなく、また、結構ブランクがあるので、ちゃんとした確認までしてませんが、
(と言い訳させていただきますが)
たぶん、あっているのではないでしょうか?

この回答への補足

さきほど、区間列に含まれる実数を探し出すほうが困難と書いたのですが、測度的に圧倒的に少ないという意味でした。。。
誤解を招くような表現で、すみません

補足日時:2008/04/13 09:42
    • good
    • 0
この回答へのお礼

たしかに実数の集合Rって書くべきでした。。。
わかりにくい質問ですみませんでした

有理数の立場から考えるのではなく、実数の立場から考えれば、ある実数の近くまで有理数が到達する頃には、有理数を含む区間の幅が急激に減少してるので、覆うことができないという解釈ですね
すべての実数は、Qから距離ゼロの位置にあるといっても、距離はinfで定義されるので、そこに無限が介在していて、距離ゼロという言葉以上にずっと遠くの彼方にあるイメージでしょうか。。。

でも、区間列の幅の和はいくらでも小さくできるので、実際は「そのような実数を探し出すこと」よりも、区間列に含まる実数を探し出すほうが困難なことなんですよね
それが不思議に思えてしまいます。。。

返信、ありがとうございました

お礼日時:2008/04/13 09:21

http://oshiete1.goo.ne.jp/qa3714410.html
は、言葉で言うと、測度0の集合の加算無限個の和集合の測度は0ということでしょうが、
これは、個人的には、非常にインパクトがあり、直感的で心に残る定理だと思います。

有理数は、実数上の点で、当然、測度0、また、加算集合なので、
上記のことから、有理数集合は、測度0になります。

おそらく、milk-roadさんが、「Rを覆えない」という印象は、
集合和を途中で(有限で)止めるからだと思います。
(証明手順の順序の問題で、証明としては問題ないと思いますが。)

リーマン流では、有限で止めないといけませんが、
ルベーグ流で、極限集合まで考えて良いと思います。

思考手順を若干修正して、有理数集合を覆える集合を考えてみたら良いのではないでしょうか?

有理数を順序付けして、n番目の要素を長さ = ε*r^n (0<r<1) の区間で覆ってやれば、
極限集合は、有限の長さになっていますし、ちゃんと覆ってもいます。

数学の難しいところですが、 手順だけを示して、実際に行わないというのも、大事のような気がします。
とくに、極限集合を先に作るという作業は、たとえば、手で実際に最後まで書くことはできませんので。

ご参考になったでしょうか?
    • good
    • 1
この回答へのお礼

うーん、集合和を有限で止めている覚えはないんですけど。。。
また、回答にある「極限集合」がRを覆っているとしたら、それは開区間の可算和になるので、Rの外測度が0っていうことになっちゃいますよね?
だからRを覆っているということはないはずです

ただ、質問文に書いた「1点1点を幅のある区間で覆っている」というところで、有限が入り込んじゃってる感じはあるんです
人間がやることですので、任意に1点を選ぶと言っても、無限の先から有理数をもってくるわけにはいかないですから。。。

ありがとうございました

お礼日時:2008/04/12 20:52

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q測度ゼロを持つ。の証明がどうしてもできません

[定義]E⊂Rが測度ゼロ"measure zero"を持つとは
0<∀ε,∃{I(n)}:有限か可算の区間の集合 such that E⊂∪[n∈N]I(n) 且つ Σ[n∈N]L(I(n))<ε
但し,L(I(n))は区間I(n)の長さを表す。

が測度ゼロの定義だと思います。その上で

[問]次を示せ。
(1) もしE1,E2が測度ゼロを持つならE1∪E2が測度ゼロを持つ。
(2) もし各E(n),n=1,2,… が測度ゼロを持つなら∪[n=1..∞]E(n)も測度ゼロを持つ。

の問題で四苦八苦してます。
ご助言賜りますよう宜しくお願い致します。

Aベストアンサー

E1,E2,E3,…が測度0ならば、任意のε>0に対して、
E1は区間の長さの和がε/2未満の区間の和集合に含まれる
E2は区間の長さの和がε/2^2未満の区間の和集合に含まれる
E3は区間の長さの和がε/2^3未満の区間の和集合に含まれる
・・・
として行けば、E1∪E2∪E3∪…は区間の長さの和が、
ε/2+ε/2^2+ε/2^3+…=ε未満の区間の和集合に含まれる。
よって、E1∪E2∪E3∪…の測度は0である。
というような方針ではどうでしょうか?
良く2つの場合はε/2を使ったり、3つの場合はε/3を使ったりしますね。
これと同じ要領でε/anでΣanが収束するようなものを考えました。

Qルベーグ可測集合ってなんですか???

ルベーグ可測集合を上手く捉えられません。

頭が悪いので簡単に説明して下さい。

今の自分の解釈は、

長さや面積や体積を持つ図形はどんな集合と言えるか?↓

ルベーグという名前の人が、これら(の図形)は測ることが出来るので、

長さや面積や体積を持つ図形の集合を「ルベーグ可測集合」と名付けた。

        長さ確定図形・・・・・・・・・・・・   1次元ルベーグ可測集合
        面積確定図形・・・・・・・・・・・・   2次元ルベーグ可測集合
        体積確定図形・・・・・・・・・・・・   3次元ルベーグ可測集合  という。

私の疑問は、Q1.長さや面積や体積を持つ図形以外に、ルベーグ可測集合に属するものは無いのか???

ということと、

Q2.「全ての図形はルベーグ可測というわけではない」  とは、どういう意味なのか???

ということです。測ることが出来ないくらい巨大な(宇宙サイズ?)図形に対して言ってるんですかね???

ちなみに、

面積(体積)がゼロの図形は、面積(体積)が0で確定しているので、面積(体積)を持つというそうです。
ってことは、面積(体積)0の図形はルベーグ可測集合に属しますよね?

面積が0の図形とは、円盤じゃなくて円周のこととか、
体積が0の図形とは、壁の無いお家(柱、骨組み)のこととか・・・ですか???

なんか的外れなことを言っていたらすみません・・・・

すっごく分かりやすく教えて下さい。

ルベーグ可測集合を上手く捉えられません。

頭が悪いので簡単に説明して下さい。

今の自分の解釈は、

長さや面積や体積を持つ図形はどんな集合と言えるか?↓

ルベーグという名前の人が、これら(の図形)は測ることが出来るので、

長さや面積や体積を持つ図形の集合を「ルベーグ可測集合」と名付けた。

        長さ確定図形・・・・・・・・・・・・   1次元ルベーグ可測集合
        面積確定図形・・・・・・・・・・・・   2次元ルベーグ可測集合
        体積確定図形...続きを読む

Aベストアンサー

次元は本質的ではないです。ちょっと誤解をうみやすい説明でしたね。
すみません。

理解のために、ユークリッド空間に限定してみましょう。例えば数直線(一次元)を全体集合とする場合で考えましょう。そして、長さの概念を考えましょう。ひとつの点(からなる集合)は、長さが0です。0、1区間[0,1](これも集合です)の長さは1です。数直線全体の長さは無限大です。(0でも無限大でも、定まっていれば長さです)ここまではえがける図で表現できます。

それでは、区間[0,1]の中の有理数からなる集合Xの長さは? これは図ではえがけませんが集合です。集合Xの長さを考える時に、複数の細かい区間で覆っていくことを考えます。有理数の集合は可算ですから、有理数をQ1,Q2,Q3,Q3,,,と番号をふることができます。例えば、Q1を長さ1/2の区間で囲み、Q2は長さ1/2~2で囲み、Q3は1/2~3で囲み、、、、と。この場合、覆う区間の長さの合計は、等比級数の和で1になります。次に覆う区間を短くしていきます、たとえば、Q1を長さ1/2~2の区間で覆い、Q2は長さ1/2~3で覆い、Q3は1/2~4でおおいと、、、(先ほどの等比級数であらわれた長さをひとつ、ずらしたものです)、、、この区間の長さの合計は1/2になります。このように、おおう区間をどんどん細かくしていくと、区間の長さの合計は0に収束します。この収束値0を、区間[0,1]の中の有理数からなる集合Xの長さとしましょうというのがルベーグの考え方です。(有理数からなる集合Xは可算ですから、こんなことは本当は必要ないのですが)、長さを決めるこのような方法を、数直線のいろいろな部分集合に適用して考えていきましょうというわけです。


以上の方法で集合の長さが決まり、どんな分割の方法であれ、わけられた部分の長さの合計が、その集合の長さと一致すれば、正しく長さを定めたことになりますが、それができない場合があるというのが、ルベーグ可測でない場合です。例えば、以下のリンクにあります

pauli.isc.chubu.ac.jp/~fuchino/papers/nagoya-logic-seminar-05.pdf

平面(2次元)を全体集合とし、その部分集合の面積を考える場合、長方形からなる区間でおおっていくことになります。そして、おおう区間を細かくしていって、、、おおう長方形の合計の面積の収束先を面積としましょうというわけです。

次元は本質的ではないです。ちょっと誤解をうみやすい説明でしたね。
すみません。

理解のために、ユークリッド空間に限定してみましょう。例えば数直線(一次元)を全体集合とする場合で考えましょう。そして、長さの概念を考えましょう。ひとつの点(からなる集合)は、長さが0です。0、1区間[0,1](これも集合です)の長さは1です。数直線全体の長さは無限大です。(0でも無限大でも、定まっていれば長さです)ここまではえがける図で表現できます。

それでは、区間[0,1]の中の有理数からなる集合Xの長...続きを読む

Qルベーグ測度について

質問があります。今ルベーグ測度について勉強しているのですが,ルベーグ測度0というのはどういう意味なのでしょうか??

Aベストアンサー

はじめまして。

測度というものは、集合の”大きさ”と捉えてよいと思います。ですから、測度0というのは、”大きさ”がないという意味と考えてはどうでしょう。

数学を少しはかじっていますが、専門ではないのでちゃんとした説明できないことをお許しください。

Q測度論の非可測集合って何?

実数の定理でしょうか? 興味がかきたてられます。
stomachmanさん、ぜひ回答をお願いします。
(全然急ぎでなくて結構です)
もちろんstomachmanさん以外の方も、回答をお待ちしています。

Aベストアンサー

逆指名は反則じゃないんですかぁ? 専門家もいらっしゃるでしょうに...うう、自爆じゃあっ。
非可測集合とバナッハ-タルスキーの定理。どちらも実務の計算とは無縁のものです。純粋数学の中にだけ現れ、直接の応用はないと思ってください。ご専門の方、ご笑覧の上フォローおねがいします。

 長さ・面積・体積といった広がりを測る概念(測度)との関連で、無限というものの「曲者性」が現れた現象のひとつが非可測集合です。さて、非可測集合とは、という話は教科書を見ていただくとして(ルベーグ積分、測度論、ボレル集合、などをキーワードにして探してみてください)、ここではなるべくいいかげんな説明と、いかにへんてこであるかの例を示すだけで勘弁して戴こうと思います。(いや、勘弁して戴きます!とても易しくかつ正確に説明するなんてできないや。)


●実数の対(x,y)で表される2次元空間の話です。1辺1の正方形を考えます。面積は1ですね。
 この正方形の中の点(x,y)のうち、xもyも有理数であるような点だけを集めた集合を考えます。この集合の「面積」はゼロ。もうびっくり? 有理数は自然数と1:1対応が付きますから、たかが可算無限個しかない。実数は非可算無限個。これに比べたら無視できるってわけですね。
 今度は正三角形を考えます。各辺の中点を結んで小さい正三角形を描き、この真ん中の正三角形の部分を切り抜いて捨てます。そうすると小さい正三角形3つでできた図形(どこかの食料品店のマークのような)が残りますね。このそれぞれの正三角形について、真ん中の正三角形の部分を捨て、.....と無限回やります。これは「シェルピンスキーのガスケット」という集合なんですが、非可算無限個の点を含んでいる。そして面積は0です。(なんですと?)
 ところが、それどころか、「面積」というものを考えることすらできないような集合がある。これが「非可測集合」です。
 面積というのは集合Aから実数sへの関数 s = m(A) です。そして「面積」というからには、Aをいくつかに分割してそれぞれの面積を求め、合計したら、元のAの面積になって欲しいですよね。少なくとも、元のAの面積より大きくなるんじゃ話にならない。ところが、どんなに上手にmを作っても「話にならない」状況が起こってしまうことが知られています。そういうやっかいな集合Aを「非可測」と呼ぶ訳です。
 
●2次元平面の部分集合Aであって、次の(1)(2)が同時に成り立つものが存在する。
  (1)2次元平面上の任意の場所に好きな大きさの円盤を描くと(どんなに小さい円盤でも)
   Aと円盤との共通点が必ず存在する。
  (2)2次元平面上に任意の直線を描くと、この直線とAとは高々2点しか共通点がない。

このAは実は非可測集合の一例です。(1)から分かるように、Aは平面上あまねく広がっている。なのに、(2)からわかるようにすかすかなんです。幽霊みたいですね。

●非可測集合は非構成的です。つまり、具体的な作り方(アルゴリズム)を記述することが不可能なんです。(もっとも、アルゴリズムが記述できる集合は可算無限個しかありませんが...)

●でも、ニアミスするまで迫ってみましょう。今度は1次元(数直線上)の「長さ」の話です。
「実数を二つ持ってきて、x, yとします。「xとyは仲良しである」とは両者の差 x-y が有理数であるという意味だ、と決めましょう。すると実数全部を、仲良しグループに分類することができます。このようなグループは無限個できます。各グループのメンバーは皆互いに仲良しですし、他のグループのメンバーとは仲良しではありません。どんな実数もどれかのグループに入ります。
 次に、各グループから委員を1つづつ出して貰います。(ただし委員は0以上1未満であること、とします。)どの委員を2つ持ってきても、仲良しではない。委員全部を集めた委員会集合Aを作りますと、Aは非可測になります。」(どうして?というのはしんどいので勘弁してください。)

 なんだ作り方が書けるじゃないか、と思われるでしょ?でも「どうやって委員を選ぶのか」が書いてない。これが実は本質的なんです。「てきとーでいいじゃん?」と、グループひとつひとつについて委員を選んでいたのでは無限個の委員を選び終わることができません。「グループのうち、0以上1未満である数の中で最大のやつを選ぶ」というのは良いアイデアですが、残念ながらグループ内に「1未満の最大の数」は存在しないんですよ。でも何か方法がありそう? 実は、ないんです。「存在することは証明できるが、やり方は本質的に分からない。」ここがポイントです。

 数学の公理のひとつに、選択公理というものがあります。すなわち「選択公理:与えられた集合の中から、要素をひとつ選び出すことができる。」当たり前みたいな話でしょう?でもこの公理を使うと「(どうやってかは知らないけど)委員を選ぶことができる。そこで...」と論を進められます。そしてその結果、「非可測集合」や「バナッハ-タルスキーの定理」など、へんてこなものが出てくる。でも、選択公理を拒絶すると、数学のパワーがまるで弱くなる。証明できることがもの凄く少なくなってしまう。数学のかなりの部分(しかもおいしいミソの部分)は選択公理がないと成り立たないんです。(「選択公理なしでどこまで行けるか」という研究分野があるからこそ、こういう事が分かったんです。)

●こういった話は、数学基礎論(「基礎的な数学」ではなく、数学の基礎となる前提に変なところはないか、などを研究する分野)です。「超限集合論」「選択公理」「連続体仮説」「不完全性定理」などなどについて、色々一般向けの解説書が出ていますが、著者ごとに説明の仕方(読者から見れば疑問のポイント)が違いますので、乱読をお勧めします。ちなみにStomachmanが数学基礎論と出会った最初の書物は「(島内剛一)数学の基礎」(既に絶版)でした。

●なお、可測集合(面積が定義できる集合)の中にも変なのはいます。
 1辺1の正方形の部分集合Aであって、面積は1であり、しかも、この集合Aに含まれるどの点(x,y)についても、「(x,y)を通り、しかも(x,y)以外ではAと交わらないような直線が少なくとも1本引ける。」そういう可測集合Aが存在する。
 つまり、Aはほとんど完全に正方形を埋め尽くしているというのに、A内のどの点からも、A自身に遮られずに外が見える、ってわけです。(わーい。こうなってくると、もうわかんないや。)

逆指名は反則じゃないんですかぁ? 専門家もいらっしゃるでしょうに...うう、自爆じゃあっ。
非可測集合とバナッハ-タルスキーの定理。どちらも実務の計算とは無縁のものです。純粋数学の中にだけ現れ、直接の応用はないと思ってください。ご専門の方、ご笑覧の上フォローおねがいします。

 長さ・面積・体積といった広がりを測る概念(測度)との関連で、無限というものの「曲者性」が現れた現象のひとつが非可測集合です。さて、非可測集合とは、という話は教科書を見ていただくとして(ルベーグ積分、測...続きを読む

Q部分群であることの証明

部分群であることの証明
Gを群、Hをその部分集合とし、a,b∈Gに対し、「a~b⇔ab^(-1)∈H」なる~ が同値関係であるとする。このとき、HはGの部分群であることを証明してほしいです。

部分群であることを証明するには、(1)結合法則が成り立つこと(2)単位元の存在(3)逆元の存在が言えればいいこと、
同値関係の定義については理解しています。

ですが証明文を書くことができず、困っています。


回答よろしくお願いします。

Aベストアンサー

えっと、同値の関係は、それでいいと思いますよ。

「結果的に同じことになった」と前にも書いたかな?

この問題では二つの同値 ~ と ⇔ がでてきているけれど、

両方とも、本来の意味として、結果的に同じになっているで、構いませんよ。

で、例に挙げた群だけど。。

実数全体(0を除く) (以下、R0 と書くことにしますね)と

演算子掛け算 × を持ってくると、群の定義は?

単位要素の存在、逆要素の存在、結合則の成立だよね。

R0の中から、好きな二つを取ってきます。

何でも構いません。掛け算した答えは、必ず実数になりますね。

 #無理数も実数だからね。虚数にならなければいい。

ここで二項代数として成立。

単位要素は、「1」ですね。 任意のR0∋c について、

c×1=c 動かないので単位要素だね。

逆要素は、c^(-1)だね。 c×(1/c)=1 単位要素に帰るわけだから。

 #0をどけたのは、これができないから。

例) c=√2 のとき c×c^(-1)=√2/√2 =1

無限に要素があるけど、これはすごく簡明な群なんだけどな・・・。

この場合は数値になるから、Hもとりやすいと思うけれども。

取ってみてくれるかな? そしたら少しつかめると思うけど。


そしてね、どっかでこれ見たことあるなぁ~と思ってました。

「群論への30講」 志賀浩二 著 朝倉出版

この、第八項に同じのがある。

出身が電気工学で、この本で独学したんだ(^^;)

本屋さん(大きな)に行く機会があったら、捜してみて?

もう結構古いから、絶版かもしれないけれど。


代数を専門とされてはいないのかな。ちょっと出てきたと言う感じかな?

群 って言うのをもう少し分かってからのほうがいいのかもしれない問題かもね?

かじるくらいにしては、少し難しいかもしれない。


でもね、例に挙げたのが群だと思って、そこから部分群になるようにHの要素を

持ってきてみて?

それができると、ある程度見晴らしがでてくると思う。

えっと、同値の関係は、それでいいと思いますよ。

「結果的に同じことになった」と前にも書いたかな?

この問題では二つの同値 ~ と ⇔ がでてきているけれど、

両方とも、本来の意味として、結果的に同じになっているで、構いませんよ。

で、例に挙げた群だけど。。

実数全体(0を除く) (以下、R0 と書くことにしますね)と

演算子掛け算 × を持ってくると、群の定義は?

単位要素の存在、逆要素の存在、結合則の成立だよね。

R0の中から、好きな二つを取ってきます。

何でも構いません...続きを読む

Qσ-加法族について

Ωを任意の集合とし,Ωの部分集合の族でσ-集合体になっているものをA,Bとする.
このとき、A∪Bは必ずしもσ-加法族にならないことを反例をもって示せ.
(ヒント:Ω={1,2,3,4,5}として考えてみよ.)

という問題が出ました。
例えば
A={{1},{2,3,4,5},Ω,φ}
B={{2,3},{1,4,5},Ω,φ} とすると
A∪B={{1},{2,3,4,5},{2,3},{1,4,5},Ω,φ}となります。
これはσ-集合体の条件である
(1)E∈F ⇒ E^c∈F
(2)Ei(i=1,2,...)∈F ⇒ ∪[i=1~∞]Ei∈F
という条件を満たすので判例とはなりません。

色々ためしてみたのですが判例とはなりえませんでした。どこか勘違いしているように思います。
ご教授いただけたら幸いです。よろしくお願い致します。

Aベストアンサー

(2)は「Fの任意の高々可算個の和はFの元である」という意味です。

EiはFのすべての元とは限りません。
無限個の集合和の場合でも、
E1={1}、E2=E3=E4=・・・・={2,3}
ということも考えられます。

Qボレル集合族って何ですか???

ボレル集合族を、イマイチ上手く捉えられません。

頭の悪い自分なりに考えたのですが、

自分の解釈が正しいのか全く分かりません。

指摘お願いします。

ちなみに自分なりの解釈↓

全体集合Ω={ω1、ω2、・・・・・}  Ωの元の個数はM個

Ωの部分集合の全ての集合F={Ω、Φ、ω1、ω2、・・・、(ω1ω2)、・・・} 
  Fの元の個数は2^M個で、FはΩのσ加法族

A⊂Fがあるとき、Aの次に、Aを含む最小のσ加法族:Bが存在する。
このBが、ボレル集合族で、ボレル集合族の元をボレル集合という。

つまり↓

Ω={ω1、ω2、・・・・・}

F={Ω、Φ、ω1、ω2、・・・、(ω1ω2)、・・・}

A⊂F

A={・・・・・・・}
B={A、・・・・・・・・・・}         BはAのσ加法族
C={A、B、・・・・・・・・・・}       CはBのσ加法族
D={A、B、C、・・・・・・・・・・}     DはCのσ加法族
E={A、B、C、D、・・・・・・・・・・}   EはDのσ加法族




A∊B∊C∊D∊E・・・で、 B、C、D、E・・・はAを含むσ加法族で、

B、C、D、E・・・のうち最小なものはBなので、BはAのボレル集合族である。

ってことですかね???

よく分からないのは、ボレル集合族の条件に、Ω∊B とありますが、

私の解釈だと、Ω∊B となっていません。 ???って感じです。

ちなみに私の解釈だと、全ての集合には、そのボレル集合族が存在します。
で、ある集合がボレル集合族ということは、その集合の元を集合とする集合があるってことです・・・?


頭が悪いので、むちゃくちゃ簡単に教えてもらわないと理解出来ません。

図書館で確率論の教科書を色々呼んだんですが、難しく書かれてあって、???です。

助けて下さい。

ボレル集合族を、イマイチ上手く捉えられません。

頭の悪い自分なりに考えたのですが、

自分の解釈が正しいのか全く分かりません。

指摘お願いします。

ちなみに自分なりの解釈↓

全体集合Ω={ω1、ω2、・・・・・}  Ωの元の個数はM個

Ωの部分集合の全ての集合F={Ω、Φ、ω1、ω2、・・・、(ω1ω2)、・・・} 
  Fの元の個数は2^M個で、FはΩのσ加法族

A⊂Fがあるとき、Aの次に、Aを含む最小のσ加法族:Bが存在する。
このBが、ボレル集合族で、ボレル集合族の元をボレル集合という...続きを読む

Aベストアンサー

ごめんんさいA^cは書き方がまずかったです。
Aの唯一の要素であるa=(ω}の補集合a^cが(ω2,ω3...ωm}と書くべきでした

ボレル集合族の定義自体は書かれている通りです。
ただそれは、全集合Ωで定義されるσ加法族の一つでしかないということです。

Q【測度論】Borel集合でない可測集合は零集合

Borel集合でない可測集合の存在はわかりましたが,ある本によると,そのような集合(Non-Borel measurable set)はすべて零集合(Lebesgue測度が0)だそうですが,どうすれば証明できるのでしょうか?よろしくお願い致します.

Aベストアンサー

証明できない。

補集合を考えてみて。

QBorel集合の例

「実数直線R上のボレル集合体 B(R) は、R 内の任意の区間を含む最小の完全加法族である」のは正しいと思いますが、実数直線上の完全加法族で、B(R)を真に含んでいるものの例はあるのでしょうか?
(ただし、Rには通常の位相を入れるものとします。)

Aベストアンサー

ANo.2です。すでにANo.4で指摘されていますが、ボレル非可測なルベーグ可測集合の作り方は以下の通りです。
1. ルべーグ非可測集合を用意する(これには選択公理を使う)
2. カントール関数を使って1のルベーグ非可測集合をカントール集合の中に写像する
3. 2の像はカントール集合の部分集合なのでルベーグ測度ゼロ、従ってルベーグ可測になる
4. カントール関数は連続なので2の像はボレル可測ではない(これがボレル可測なら1もボレル可測になってしまう)

あと、検索したら非ボレル集合の構成方法がありました。
http://ja.wikipedia.org/wiki/%E3%83%9C%E3%83%AC%E3%83%AB%E9%9B%86%E5%90%88
ただこの例の集合がルベーグ可測かどうかは分かりません。

Q数学科の大学院卒の方々は就職後、数学をあきらめるのか?

数学科の大学院では、研究者向けの内容を勉強していていると思います。
研究者になれる人はまれで、ほとんどが挫折して、就職していくと思います。
就職先では、たとえ数学を使う仕事であったとしても、大学院での内容とは完全に異なると思います。

社会人になると、そのような仕事のために、時間と情熱を使い、数学を勉強し続けたくても、現実には困難と思います。

実際、数学科の大学院卒の方々は就職後、数学をあきらめるのでしょうか?

あきらめないにしても、どのような数学の方向性を目指していらっしゃるのでしょうか?

Aベストアンサー

 基礎数学にせよ応用数学にせよ、その気になれば就職口はあります。

 知り合いの後輩で、今年度ソニーに就職した人がいます。
 大学院時代の専攻は符号理論で、楕円暗号の研究をしていたとか。

 他、大規模科学計算の必要なところなら、電子回路の設計にせよ、大規模な統計処理にせよ、プラント設計におけるモデリングにせよ、いろいろと仕事はあります。
 No. 1 さんの仰るような金融商品のデザインや、株価動向の解析(いわゆる経済数学、経営工学など)といった仕事もあります。

 それらの経験を通じて、やがて大学に戻るというキャリアを積む人もいますよ。
 中には趣味レベルながら内容的には高水準の基礎数学の研究を続けている人だって居ます。

 大学等で数学の研究職に拘って生きている人は極めて稀ですが、数学に触れ続けるだけなら数学科卒でなくてさえ可能だと思います。
 就職する人だって、挫折して研究者の途を諦めた人ばかりではありません(再受験などを経て、別の分野で研究職を目指す人もいるくらいですし)。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング