問)インターネットの月料金について、A社は基本料金1000円で、1時間につき100円の使用料である。B社は基本料金3000円で、10時間までは使用料が0円、10時間を越えた分は、1時間につき50円の使用料である。

(1)B社の方がやすくなるのは、何時間より多く使用した時か。

(2)A社が1時間あたりの使用料を変更して、50時間未満まで、A社の方が安くなるようにしたい。1時間あたりの使用料をいくらにすればよいか。

こういった問題がありました。
どういった式を立ててとけばいいんですか?
教えてください。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

10時間以後について方程式を立てます。

10時間でA社は2000円、B社は3000円です。各社のコストCa,Cbは
(1)A:Ca=100H+2000  
   B:Cb=50H+3000
   Ca=CbとなるHは20hr、よって開始時より30Hr
(2)A社の1時間あたりの使用料をx円/hrとすると
   A:Ca=xH+2000  
    B:Cb=50H+3000
   H=40hrとしてCa=Cbとなるxをもとめると
   x=75円/hr
    • good
    • 0

>どういった式を立ててとけばいいんですか?



グラフを書く。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q不等式

僕は数学の不等式系の問題や単元がものすごくキライで苦手です。
不等式が出てきたら一瞬にして集中力も切れ勉強する気がなくなります。
今、不等式の表す領域をチャートで勉強していたのですが全くわかりません。
それにやる気までなくなりました。
不等式の苦手意識を克服する方法はありませんか?
今高三理系で受験生です。

Aベストアンサー

苦手意識を作ってしまった事が諸悪の根源です。それを断ち切るには、最初に戻って一から勉強しなおすことです。数学Iで不等式を習いますから、教科書の問を順に解いていくことをお勧めします。不等式の扱いは他の分野に比べて特に難しいところはありません。復習して最初からやり直すことで何ら難しい分野ではないことが分かると思います。

 さて、不等式の表す領域ですが、これはがよくわからないのは不等式の難しさとは別のところにあると思います。特に不等式の表す領域におけるxとyの表す式の最大値最小値問題が難しいのは不等式が苦手なのとは別の次元にあります。

 数学の解答を読んで分からないのは、その解答が何をしているか気づかないからです。では、なぜ気付かないのかというと経験が少ないからです。チャートを勉強しているときに、解答を読んで分からなければ、むしろ自力で解いてみるといいです。人の解答を読むより、自分で解くほうがむしろ簡単です。(解答が読めない人の場合)指針など、解法の要点を理解したらあとは自分で解いてみたらどうでしょうか。

このアドバイスが参考になれば幸いです。

Q高さa,底面の円の半径aの円錐を、底面の円の中心を通り、底面と45°の

高さa,底面の円の半径aの円錐を、底面の円の中心を通り、底面と45°の角度で交わる平面で
切断したとき、小さい方の体積を求めよ。

これを次のように考えましたが、答えとは異なるのですが、
考え方のどこが間違っているのか分かりません。考え方を示しますので
誤りをご指摘ください。
最初に切断したときの切り口をS1とする。
次に小さい方の体積を切り口S1に平行な平面で切った切り口をS2とする。
このとき、S1とS2は相似な図形だから、以下、S1に平行な平面で切った
切り口はすべて相似であることから、この切り口の面積を積分すると求める体積になると
思いました。
中心を通って、S1と45°になる直線をX軸にして、中心のX座標を0として、
積分の式は、S1の面積をAとするとA×∫[0~a](a-x)^2/2dxとなりました。

Aベストアンサー

>(1)簡単に相似でないと判断はできる方法は?

「すべての放物線は相似である」は正しいですが、放物線の一部だけを見た場合は相似とは限りません。
例えば、y=x^2とy=2x^2とは相似としていいですが、-1≦x≦1の区間だけにすると相似ではありません。
相似であると明確に証明できない限りはむやみに相似と判断しないことです。


(2)もし、相似だったら質問のような方法で積分してよいのでしようか?

(a-x)^2/2がどこからきたのかわかりませんが、相似でなくても考え方の方向は合ってます。

S1の面積をAとすると、これはx=0のときの面積だから、
x=tのときの面積は、縦方向に(a-t)/a倍、横方向に√(a^2-t^2)/a倍したものになります。
(x=0のとき1倍、x=aのとき0倍になる)

よって、求める体積は、

V=(√2/2)×A×∫[0~a]((a-x)/a)(√(a^2-x^2)/a)dx

となります。(初めの(√2/2)は切り口が45度傾いているため)

Q数1 不等式

不等式がちっともわからないのでアドバイスお願いします。

※2乗は~で表させていただきます

xの不等式 x~2-2x≦0ー(1) 
     x~2-ax-2a~2ー(2)  (aは定数)

1、不等式(1)を解いて下さい

これは 0≦X≦2でいいと思うんですが。


2、0<a<1のとき、不等式(2)を求めてください、また不等式(1)、(2)を同時に満たすxの値の範囲を求めてください

全然解らないです((汗

3、不等式(1)、(2)を同時に満たすxの整数値がちょうど2個存在するときaのとりうる値の範囲を求めてください

よろしくお願いします。

Aベストアンサー

skyline-gtr-32さん、こんにちは。

>xの不等式 x~2-2x≦0ー(1) 
1、不等式(1)を解いて下さい
これは 0≦X≦2でいいと思うんですが。

そうですね。skyline-gtr-32さんの答えどおりでいいです。

x^2-2x=x(x-2)≦0なので
0≦x≦2という答えの範囲になります。

>2、0<a<1のとき、不等式(2)を求めてください、また不等式(1)、(2)を同時に満たすxの値の範囲を求めてください

まず、(2)の不等式を因数分解します。

x^2-ax-2a^2=(x+a)(x-2a)<0・・・(☆)
なんですよね。
さて、
(x-p)(x-q)<0という不等式の答えの範囲は、
p<qという条件つきならば、p<x<q
が答えになりましたよね?

(☆)を見てみると、-aと2aの大小比較をして、
(小さいほう)<x<(大きいほう)
というのが答えになるのが分かると思います。

-aと2aはどちらが大きいのでしょうか?
2a<-aとすると、3a<0となるので、a<0となって0<a<1に矛盾します。
-a<2aとすると、0<3aとなって、これは0<a<1にあてはまりますから
-aのほうが2aより小さいです。
したがって、答えは

-a<x<2aとなります。

さらに、(1)(2)を同時に満たす、ということは

0≦x≦2
-a<x<2a・・・(★)
の2つを同時に満たしている、ということですね。
ここで、0<a<1ですから
(★)は-1<a<x<2a<2ということになりますから、0≦x≦2との共通部分は
0≦x<2a
ということになります。

>3、不等式(1)、(2)を同時に満たすxの整数値がちょうど2個存在するときaのとりうる値の範囲を求めてください

0≦x<2a
の中に、整数解が2個あるようにするには、
x=0,x=1が入ればいいので
1<2a
つまり(1/2)<a
0<a<1の条件と合わせれば、1/2 <a<1
ということになると思います。

skyline-gtr-32さん、こんにちは。

>xの不等式 x~2-2x≦0ー(1) 
1、不等式(1)を解いて下さい
これは 0≦X≦2でいいと思うんですが。

そうですね。skyline-gtr-32さんの答えどおりでいいです。

x^2-2x=x(x-2)≦0なので
0≦x≦2という答えの範囲になります。

>2、0<a<1のとき、不等式(2)を求めてください、また不等式(1)、(2)を同時に満たすxの値の範囲を求めてください

まず、(2)の不等式を因数分解します。

x^2-ax-2a^2=(x+a)(x-2a)<0・・・(☆)
なんですよね。
さて、
(x-p)(x...続きを読む

Q10円玉,50円玉,100円玉の問題

 10円玉,50円玉,100円玉,あわせて30枚ある。合計金額は2000円である。10円玉と50円玉の合計枚数は、100円玉より2枚多い。10円玉,50円玉,100円玉はそれぞれ何枚ずつあるか?
という問題があるのですが、
10円玉の枚数をx、50円玉の枚数をy、100円玉の枚数をzとして、
 x+y+z=30
 10x+50y+100z=2000
という連立方程式をつくったりしてみたのですが答えが導くことができません・・・。
ヒントでいいので分かる方いらっしゃいましたら御願い致します。

Aベストアンサー

「10円玉と50円玉の合計枚数は、100円玉より2枚多い」からx+y=z+2という式が出てきますね。

ちゃんと解けますよ。

Q不等式の問題

息子と共に不等式を勉強しています。問題レベルはx-3 ≤ 4 程度です。
今息子の頭は初めての不等式でこんがらがってます。そこで回答付きの問題をネットにて探しています。
一次不等式の問題、何かいいサイトありますか?
宜しくお願いいたします。

Aベストアンサー

あ~難しいですよね・・・

これなんかどうでしょう?

参考URL:http://www7a.biglobe.ne.jp/~mkun/Mathematics/renhutou.htm#1

Q環Rの基本(∀a∈Rでpa=aが成り立つ時ap=a?)

似たような質問ですみませんが、またよろしくお願いします。

【質問】
『環Rの乗法で単位元の存在を仮定していない時
∀a∈Rで
pa=aを満たすp∈Rが存在するならそのpはap=aも満たす。』
は正しいでしょうか?

私は満たさないような気がするのですが、
反例が見つけられません。
よろしくお願いします。

Aベストアンサー

>はい、ヤフーも利用しております。
「マルチポスト」と呼ばれる行為で一般にマナー違反とされます.
OKWaveだと「サイト内のマルチポスト」が
規約で明確に禁止されてますな

>すみません、両者の違いが分からないのですが・・・。
うお・・・こっちが勘違いしてました.
pa=a で単位元なので,そもそも単位元の話ですな

質問の答えじゃないですが,
大事な部分なので追記します.

ええっとですね
「任意のaに対して,あるpが存在して」
という場合は,pはaに対応して決まるので
一個でなくても構わないのに対して,
「あるpが存在して,任意のaに対して」
という場合は,pがあって,それを使うと
どんなaに対しても
という意味合いになるので話が変わるということです.

>『任意のaに対して,あるpが存在して
> pa=aであるならばap=aである』のつもりで単位元の問題だと思っておりました。
私は質問文からは逆に
「「任意のaに対してpa=aを満たす」pが存在するならば ap=p である」
と読み取りました.
>∀a∈Rでpa=aを満たすp∈Rが存在するならそのpはap=aも満たす。
って書いてありますからね.

教科書で
単位元や逆元の定義を見直してみてください.
存在と任意の順番がきちんと区別されています.

>はい、ヤフーも利用しております。
「マルチポスト」と呼ばれる行為で一般にマナー違反とされます.
OKWaveだと「サイト内のマルチポスト」が
規約で明確に禁止されてますな

>すみません、両者の違いが分からないのですが・・・。
うお・・・こっちが勘違いしてました.
pa=a で単位元なので,そもそも単位元の話ですな

質問の答えじゃないですが,
大事な部分なので追記します.

ええっとですね
「任意のaに対して,あるpが存在して」
という場合は,pはaに対応して決まるので
一個でなくても...続きを読む

Q二次不等式の問題です急いでます

二次不等式x二乗-(a+1)x+aについて次の問いに答えよ。
(1)a≠1のとき不等式を解け
(2)不等式を満たす整数xがただ1つだけとなるときのaの値の範囲を求めよ。

両方お願いします(._.)

Aベストアンサー

> 二次不等式x二乗-(a+1)x+aについて
不等式となってません。

x^2-(a+1)x+a<0
でしょうか?

そうであるとして回答します。

(1)a≠1
x^2-(a+1)x+a<0
(x-a)(x-1)<0

a>1のときの解 1<x<a
a<1のときの解 a<x<1

(2)
a=1とすれば不等式は
 (x-1)^2<0
これを満たす整数xは存在しないから a≠1

(1)の結果より
整数xがただ1つだけとなるときは

a>1のときの解 1<x<a → 2<a≦3
a<1のときの解 a<x<1 → -1≦a<0

まとめると
 2<a≦3 または -1≦a<0

もし不等式が
x^2-(a+1)x+a≦0
であれば

(1)a≠1
x^2-(a+1)x+a≦0
(x-a)(x-1)≦0

a>1のときの解 1≦x≦a
a<1のときの解 a≦x≦1

(2)
整数xがただ1つだけとなるときは
a=1のとき
 (x-1)^2≦0
これを満たす整数xは x=1 条件をみたす。

a≠1のとき
(1)の結果より

a>1のときの解 1≦x≦a → 1<a<2
a<1のときの解 a≦x≦1 → 0<a<1

まとめると
 0<a<2

> 二次不等式x二乗-(a+1)x+aについて
不等式となってません。

x^2-(a+1)x+a<0
でしょうか?

そうであるとして回答します。

(1)a≠1
x^2-(a+1)x+a<0
(x-a)(x-1)<0

a>1のときの解 1<x<a
a<1のときの解 a<x<1

(2)
a=1とすれば不等式は
 (x-1)^2<0
これを満たす整数xは存在しないから a≠1

(1)の結果より
整数xがただ1つだけとなるときは

a>1のときの解 1<x<a → 2<a≦3
a<1のときの解 a<x<1 → -1≦a<0

まとめると
 2<a≦3 または -1≦a<0

もし不等式が
x^2-(a+1)x+a≦0
であれば

(1)a≠1
x^2-(a+1)x+a≦0
(x...続きを読む

QAとBは合わせて110円、AはBより100円高い。

『AとBは合わせて110円、AはBより100円高い。さてBの値段は?「10円だろwwwww」って一瞬でも思った人はきっと疲れてるから冷たい飲み物でも買って一息つきましょう。』

という問題。

数式を立てて解けば、A=105、B=5だということは分かるのですが、
A=100、B=10では駄目な理由が分かりません。
条件は満たしてますよね。

論理的に教えて頂ければと思います。

Aベストアンサー

A=100、B=10では、AはBより90円高い。

Q三角不等式の問題

三角不等式の問題
 0°<=θ<=180°のとき、つぎの不等式を解け。
  1)sinθ<=1/2
  2)2cosθ-√3<0
  3)tanθ+1>=0

 考え方が分かりません;;丁寧にご解説下さると嬉しいです。
 
 不等式を解いて(2)cosθ<√3/2、(3)tanθ>=-1になることまでは分かりましたが…

Aベストアンサー

>考え方が分かりません;;丁寧にご解説下さると嬉しいです。

参考URLを見れば考え方が分かるはずです。ここをじっくり見て
単位円を使った三角不等式を解き方を勉強してみて下さい。
そうすれば解けるようになるかと思います。

その結果、分からない箇所があれば、補足にやったことを書いてどこが分からないかきいてください。

http://www.kwansei.ac.jp/hs/z90010/sugaku1/sankaku/sanhotei/sanhotei.htm

参考URL:http://www.kwansei.ac.jp/hs/z90010/sugaku1/sankaku/sanhotei/sanhotei.htm

Q三つのベクトルa→、b→、c→の間にb→・c→=c→・a→=a→・b→=-1

三つのベクトルa→、b→、c→の間にb→・c→=c→・a→=a→・b→=-1
a→+b→+c→=0→なる関係があるとき、
a→、b→のなす角Θを求めよ。


この問題わかりませんでした。

解らないところは、この題意を読んでいて
b→・c→=c→・a→=a→・b→=-1 (A)
a→+b→+c→=0→  (B)
上の二つの式の意味です。


たぶん、この二つの関係をもちいて、なんとかして、a,bのなす角を求めるとおもうのですが、
それには、内積の公式を利用すると考えましたが。。 (cosΘ=a・b / |a||b|)

a・bの値と
|a||b|の値を題意から、どのように考えて、導き出すかわかりませんでした。。。

どなたか、この問題教えてください>_<
宜しくお願いします!!

Aベストアンサー

a→+b→+c→=0→ から c→=-a→ -b→ として c→ を消去する(最初の式に代入)
b→・(-a→ -b)=(-a→ -b→)・a→=a→・b→=-1
-(b→・a→) -|b→|^2=-|a→|^2 -(b→・a→)=a→・b→=-1
-(b→・a→) -|b→|^2=-|a→|^2 -(b→・a→) より
|b→|=|a→|
-|a→|^2 -(b→・a→)=a→・b→=-1 より
-|a→|^2=2(a→・b→) = -2
よって |b→|=|a→|=√2
a→・b→=|a→||b→|*cosθ=2cosθ= -1
cosθ= -1/2


人気Q&Aランキング

おすすめ情報