aはa≧5をみたす定数として、
1-a≦(5a^2-26a+5)^2≦a-1と
0≦(5a^2-26a+5)^2≦a-1
は同値でしょうか?
1-a≦(5a^2-26a+5)^2≦a-1⇒0≦(5a^2-26a+5)^2≦a-1も
0≦(5a^2-26a+5)^2≦a-1⇒1-a≦(5a^2-26a+5)^2≦a-1も真なので同値だと思うのですが。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

前半)


> aはa≧5をみたす定数として、
この↑条件下では同値ですね。

後半も
>> aはa≧5をみたす定数として、
この↑条件下では同値ですね。
    • good
    • 0
この回答へのお礼

どうもありがとうございましたー

お礼日時:2010/01/24 12:11

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q3次関数y=x^3-2ax^2+a^2x (a>0)の0≦x≦1におけ

3次関数y=x^3-2ax^2+a^2x (a>0)の0≦x≦1における最大値を求めたい。
まず、yはx=(ア)のときに極大値(イ)をとり、x=(ウ)のとき極小値(エ)をとり、さらに(ア)以外にy=(イ)となるようなxの値はx=(オ)である。
そこで、求める最大値をaの関数と考えてM(a)で表すと次のようになる。
a≧(カ)のとき M(a)=(キ)
(カ)>a≧(ク)のとき M(a)=(ケ)
(ク)>a>0のとき M(a)=(コ)

という問題なんですが、(ア)~(オ)までは分かったんですが、
場合わけする部分がどうすれば解答にたどり着くか分かりません。
分かる方解説よろしくお願いします。

解答
(ア)a/3(イ)(4a^3)/27(ウ)a(エ)0(オ)4a/3
(カ)3(キ)a^2-2a+1(ク)3/4(ケ)(4a^3)/27(コ)a^2-2a+1

Aベストアンサー

dy/dx=3x^2-4ax+a^2
     =(3x-a)(x-a)
     =0
とおくとx=a/3、a
ですから、極大値はx=a/3のとき、極小値はx=aのときですね。ここで、この関数のグラフを書いてみましょう。原点を通り、x>0の領域で極大および極小値を持ちます。
 問題になるのは0<=x<=1の領域ですから、x=1の直線がこのグラフとどういう位置関係にあるかで最大値が変わってきますよね?
 例えばa/3>=1であればx=1の時が最大値、a/3<1<=aであればx=a/3のときが最大値というように。
 グラフ中のいろいろな位置にy軸と平行な直線を書きこんで、どこが最大値になるか考えてみて下さい。

Qx,yは実数x^2+y^2=36,y≧0を満たす時、(□-□√□)/5≦(y-3)/(x-9)≦□を埋めよ

こんばんわ。宜しくお願い致します。

[問]
x,yは実数x^2+y^2=36,y≧0を満たす時、
(□-□√□)/5≦(y-3)/(x-9)≦□
を埋めよ。

という問題で困ってます。
(y-3)/(x-9)=k
とおいてから
y=kx-9k+3
から先に進めません。
何か良い方法がありましたらお教え下さい。

Aベストアンサー

x^2+y^2=36,y≧0 は、原点中心の半径6の円の上半分
(y-3)/(x-9)=k
とおくと
(y-3)=k(x-9) は、(9,3)を通る直線
この直線が半円と共有点を持つときの傾きkの範囲を求めるということ。
最大値はすぐわかりそう。
「最小値は直線と原点の距離が6」という条件でやったらいいと思います。

Qx^2+2ax-a^2=0 これを解くとx=-1-√2aと-1+√2a

x^2+2ax-a^2=0 これを解くとx=-1-√2aと-1+√2aになるみたいです。どういうふうに考えたら、この答えになるんですかね?ちなみにa>0です。

Aベストアンサー

x^2+2ax-a^2=0
x^2+2ax=a^2
x^2+2ax+a^2=2a^2
(x+a)^2 = 2a^2
x+a = ±(√2)a
x=-a±(√2)a

だと思いますけど。その答が間違っているのでは?

Q∬sin(x+y)dxdy;0≦x,0≦y,x^2+y^2≦1

∬_S sin(x+y)dxdyの解を求めよ。
ただしS:={(x,y);x≧0,y≧0,x^2+y^2≦1}とする。

と言う問題ですが、検索したところ類似問題の答えを見つけました。
以下をご覧ください。
--------------------------------------------------------------
この先生http://www.math.meiji.ac.jp/new/35.htmlの
http://www.math.meiji.ac.jp/~mk/lecture/kaisekigairon-2/exercise1.pdf
の中の2.の(5)の答えは"2"になっております。
------------------------------------------------
さて、ちょっとややこしいのですが、上記二者は全く同じ問題ではないので、こことは別なあるご相談サイトで前者の問題
∬_S sin(x+y)dxdy;0≦x,0≦y,x^2+y^2≦1・・・・・について質問したところ、次のような回答がありました。

その回答の抜粋;”私も積分値が何なのかは知りませんが、積分領域の S の面積がπ/4 で、sin(x+y)≦1 なので積分値はπ/4 以下になります。”
あとで気づいたのですが、この記述は、
http://www.math.meiji.ac.jp/~mk/lecture/kaisekigairon-2/exercise1.pdf
の答えと矛盾するような気がしますが、どうでしょうか?
当方独学の部分が多いため、わからなくなって困っております。宜しくお願い致します。

∬_S sin(x+y)dxdyの解を求めよ。
ただしS:={(x,y);x≧0,y≧0,x^2+y^2≦1}とする。

と言う問題ですが、検索したところ類似問題の答えを見つけました。
以下をご覧ください。
--------------------------------------------------------------
この先生http://www.math.meiji.ac.jp/new/35.htmlの
http://www.math.meiji.ac.jp/~mk/lecture/kaisekigairon-2/exercise1.pdf
の中の2.の(5)の答えは"2"になっております。
------------------------------------------------
さて、ちょっとややこしいのです...続きを読む

Aベストアンサー

∫[S] sin(x)cos(y)+cos(x)sin(y)dxdy
=∫[0,1]{sin(x)∫[0,√(1-x^2)]cos(y)dy+cos(x)∫[0,√(1-x^2)]sin(y)dy}dx
=∫[0,1]{sin(x)sin√(1-x^2)-cos(x)[cos√(1-x^2)-1]}dx
=∫[0,1]cos(x)dx-∫[0,1] cos{x+√(1-x^2)}dx
=sin(1)-∫[0,1] cos{x+√(1-x^2)}dx …(◆)
≒0.8414709848-0.2793082485
≒0.5621627363
(◆)の第二項の定積分は解析的に行えませんので数値計算(ガウス数値積分法その他→参考URL参照)で計算します。

積分そのものは以下のサイトで数値積分してくれます。
ttp://www10.wolframalpha.com/input/?i=integrate%28integrate%28sin%28x%2By%29%2Cy%2C0%2Csqrt%281-x%5E2%29%29%2Cx%2C0%2C1%29
integrate(integrate(sin(x+y),y,0,sqrt(1-x^2)),x,0,1)

参考URL:http://homepage3.nifty.com/gakuyu/suti/sekibun/gauss-int.html

∫[S] sin(x)cos(y)+cos(x)sin(y)dxdy
=∫[0,1]{sin(x)∫[0,√(1-x^2)]cos(y)dy+cos(x)∫[0,√(1-x^2)]sin(y)dy}dx
=∫[0,1]{sin(x)sin√(1-x^2)-cos(x)[cos√(1-x^2)-1]}dx
=∫[0,1]cos(x)dx-∫[0,1] cos{x+√(1-x^2)}dx
=sin(1)-∫[0,1] cos{x+√(1-x^2)}dx …(◆)
≒0.8414709848-0.2793082485
≒0.5621627363
(◆)の第二項の定積分は解析的に行えませんので数値計算(ガウス数値積分法その他→参考URL参照)で計算します。

積分そのものは以下のサイトで数値積分してくれます。
ttp://www10.wolframalpha.com/input/?i...続きを読む

QF_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} の因数分解

F_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} 
(n=1,2,3,4,5)
を因数分解せよ、という問題なのですが、どすればよいのでしょうか?

なお、答えは、

F_1=3(b+c)(c+a)(a+b)
F_2=5(b+c)(c+a)(a+b)(Σa^2+Σab)
F_3=7(b+c)(c+a)(a+b)(Σa^4+2Σa^3 b+3Σa^2 b^2+5Σa^2 bc)
F_4=3(b+c)(c+a)(a+b)(3Σa^6+9Σa^5 b+19Σa^4 b^2+35Σa^4 bc+23Σa^3 b^3+63Σa^3 b^2 c)
F_5=11(b+c)(c+a)(a+b)(Σa^8+4Σa^7 b+11Σa^6 b^2+21Σa^6 bc+9Σa^5 b^3+54Σa^5 b^2 c+23Σa^4 b^4+84Σa^4 b^3 c+123Σa^4 b^2 c^2+159Σa^3 b^3 c^2)

のようなのですが、(b+c)(c+a)(a+b)を因数に持つことは分かりますが、残りの因数はどうやってもとめるのでしょうか?

一文字を変数と見て、地道に割り算するしかないのでしょうか?
効率的な計算方法はありますでしょうか?

F_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} 
(n=1,2,3,4,5)
を因数分解せよ、という問題なのですが、どすればよいのでしょうか?

なお、答えは、

F_1=3(b+c)(c+a)(a+b)
F_2=5(b+c)(c+a)(a+b)(Σa^2+Σab)
F_3=7(b+c)(c+a)(a+b)(Σa^4+2Σa^3 b+3Σa^2 b^2+5Σa^2 bc)
F_4=3(b+c)(c+a)(a+b)(3Σa^6+9Σa^5 b+19Σa^4 b^2+35Σa^4 bc+23Σa^3 b^3+63Σa^3 b^2 c)
F_5=11(b+c)(c+a)(a+b)(Σa^8+4Σa^7 b+11Σa^6 b^2+21Σa^6 bc+9Σa^5 b^3+54Σa^5 b^2 c+23Σa^4 b^4+84Σa^4 b^3 c+123Σa^4 b^2 c^2+159Σa^3 b^3 c^...続きを読む

Aベストアンサー

最後までは計算していませんが、次の方法でできそうです。
F_n = (b+c)(c+a)(a+b)(Σ[ABC] k_ABC a^A b^B c^C) とおきます。
(ここで、A+B+C = 2n+1 です。)
展開すると、F_n = (a^2 b + 略 + 2abc)(Σ[ABC] k_ABC a^A b^B c^C) です。
そして、F_n を例えば、a で A+2 回偏微分、a で B+1 回偏微分、
a で C 回偏微分、した後、a,b,c に 0 を代入します。
F_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} に対しても同じようにします。
このようにすると、例えば C > 0 であれば、
k_ABC (A+2)!(B+1)!(C)! = (2n+1)! となり、係数が得られます。


人気Q&Aランキング

おすすめ情報