度々お世話になります。
直線のベクトル方程式とその法線ベクトルの関係で、
「直線ax+by+c=0において、n↑=(a,b)はその法線ベクトルである」との事ですが、このn↑=(a,b)というのは、成分表示ですから、n↑の始点を原点Oに取って、その終点の座標が(a,b)である、という捉えで良いのでしょうか。
例えば、次の基本的な問題
問 「二直線x+√(3)y-1=0…(1)、x-√(3)y+4=0…(2)について、
a,直線(1)(2)の法線ベクトルm↑、n↑のなす角θ。
b,二直線(1)(2)のなす鋭角α。
をそれぞれ求めよ」
を内積を使って計算だけで求めるのは教科書通りにやれば簡単に求まりますが、特に問題のbについて、自分で座標平面に作図してみたら、先の当方の捉え方ですと…
まず、n↑=(1,√(3))、m↑=(1,-√(3))ですから、これをそれぞれ始点を原点に取って、それぞれの座標通りに終点を取りますと、n↑が二直線(1)(2)の内部のm↑と交わらずII象限で交わってしまうのです。
解説を見たところ、bの問題は、円に内接する四角形の定理からαを求めているように見えるので、法線ベクトルn↑は四角形を作るように、m↑と交わらないと定理が成り立たない気がするのです。
という事は、n↑に限らず、法線ベクトルは、普通のベクトル同様に、位置は問題にせず、任意に平行移動しても良いということになるのでしょうか。
計算間違いがあるかもしれないし、漠然とした内容の質問で申し訳ありませんが、アドバイス下さると有り難いです。
宜しくお願いします。
No.1ベストアンサー
- 回答日時:
こんばんわ。
方向ベクトルにしても、法線ベクトルにしても、
書かれているようなイメージでいいと思います。
方向ベクトルは考えている直線が進んでいく方向を表し、
法線ベクトルは考えている直線に対する垂線が進んでいく方向を表しており、
いずれも直線の方向を与えているだけです。
たとえば、直線の方程式が 2x+ 4y- 3= 0であれば、
法線ベクトルは n→= (2, 4)と表すことになりますが、
n→= (1, 2)としても「その進んでいく方向」は同じであり、これも法線ベクトルと言えます。
さらに、-1を乗じた n→= (-1, -2)も法線ベクトルと言えます。
値というよりも「比」がポイントなのです。
「なす角」を考える問題では、質問に書かれているとおり「平行移動」させて構いません。
2直線の交点となる点を原点まで平行移動させているイメージになります。
最後に「方向ベクトル」に関する過去の質問を参考URLとしてつけておきます。
参考URL:http://oshiete.goo.ne.jp/qa/6229779.html
ご回答ありがとうございました。考えてみれば、法線ベクトルの定義に「任意の点を通る」とはありませんでした。ある直線に対して垂直であることを満たせば、それは法線ベクトルになるわけですね。後は傾き(向きとか方向)の問題になるわけですね。
また、焦らずに過去問も探すように心掛けます。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 ベクトル方程式(ヘッセの標準形)についての質問 2 2022/04/23 18:00
- 数学 数学の問題で法線ベクトルについて 5 2022/11/13 12:45
- 数学 球面と接する直線の軌跡が表す領域 4 2023/07/30 12:37
- 数学 ベクトル方程式の問題についてです。 直線L(x,y)=(0, -3)+s(1, 4)について、点P( 2 2022/06/19 11:43
- 数学 数Bベクトル 平行四辺形ABCDにおいて、辺ABを3:2に内分する点をE、対角線BDを2:5に内分す 3 2022/06/19 12:11
- 数学 この問題がわかりません。 B(2,1,-1)を通り、法線ベクトルn*=(3,-1,2)の平面αの平面 4 2022/05/09 16:47
- 数学 3次元実ベクトル空間において, 平面 P:x-y+z+1=0 と直線 L:2(x-1)=-y=-z 3 2022/10/29 14:39
- その他(プログラミング・Web制作) 3Dモデルにおける法線の計算について(Python,OpenGL) 1 2023/04/25 23:46
- 中学校 OA=OB=OC=AB=AC=1、 ∠BOC=90°となる四面体OABCの 辺OA上に点DをOD:D 4 2022/10/11 10:07
- 物理学 ベクトルと座標系につきまして 1 2022/04/03 06:23
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・「黒歴史」教えて下さい
- ・2024年においていきたいもの
- ・我が家のお雑煮スタイル、教えて下さい
- ・店員も客も斜め上を行くデパートの福袋
- ・食べられるかと思ったけど…ダメでした
- ・【大喜利】【投稿~12/28】こんなおせち料理は嫌だ
- ・前回の年越しの瞬間、何してた?
- ・【お題】マッチョ習字
- ・モテ期を経験した方いらっしゃいますか?
- ・一番最初にネットにつないだのはいつ?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・2024年に成し遂げたこと
- ・3分あったら何をしますか?
- ・何歳が一番楽しかった?
- ・治せない「クセ」を教えてください
- ・【大喜利】【投稿~12/17】 ありそうだけど絶対に無いことわざ
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
メール文章で直線の描き方について
-
PowerPoint 罫線で直線を引く...
-
パワーポイント2010 コネクタ...
-
数学A 共通接線の問題です
-
3次元ユークリッド空間内の直線
-
電気ハンドホールの設置間隔の...
-
三角形の辺の和が最小になるよ...
-
数学の問題で、点(4.2)を通り円...
-
エクセル・パワーポイントなど...
-
2直線を含む平面
-
直線の傾き「m」の語源
-
このSを正射影した面積がScosθ...
-
数学のベクトルの問題です。
-
120分の番組を1.5倍速で見ると8...
-
数学直線の方程式とベクトル方...
-
九つの点を線で結ぶ問題で・・・
-
平面上に8本の直線があり、その...
-
数学Ⅱ 直線の方程式を求めよと...
-
防衛医大 1999年の数学の過去問...
-
線形代数 空間ベクトルと平面方...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
メール文章で直線の描き方について
-
PowerPoint 罫線で直線を引く...
-
エクセル・パワーポイントなど...
-
ユークリッド幾何学とは?
-
三角形の辺の和が最小になるよ...
-
このSを正射影した面積がScosθ...
-
3点が「同一直線上」と「一直...
-
数学A 共通接線の問題です
-
直線の傾き「m」の語源
-
パワーポイント2010 コネクタ...
-
グランドにきれいな長方形を描...
-
円x²+y²=1と直線y=x+mが接する...
-
円を直線で分割すると・・・?
-
作図の問題です
-
電気ハンドホールの設置間隔の...
-
中1数学について。 「1つの直線...
-
数Ⅱ、円と直線に関する三角形の...
-
次の2直線のなす鋭角θをもとめ...
-
不等号をはじめて習うのは?
-
120分の番組を1.5倍速で見ると8...
おすすめ情報