
No.1ベストアンサー
- 回答日時:
>f(x)=g(x)⇔∫f(x)dx=∫g(x)dx
不定積分は積分定数を含みそれが任意定数なので関数としては不定つまり一意に決まる関数ではありません。なので「∫f(x)dx=∫g(x)dx」といった等式でかけません。
なのでこの命題は意味がありません。
んおで逆を考えることも意味がありません。
>f(x)=g(x)⇔∫[a→b]f(x)dx=∫[a→b]g(x)dx
左から右は成り立ちます。
右から左(逆)は成り立ちません。
例)f(x)=|sin(x)|, g(x)=|cos(x)|,[a→b]=[0→π]
>f(x)=g(x)⇔∫[a→b]f(x)dx=∫[a→b]g(x)dx
左から右は成り立ちます。
これは成り立ってしまうんですね(^O^)
微分方程式からの疑問だったんですが、関数という解を求めるのは、ひとまとまりの解法として理解しておきます~
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 積分と不等式 2 2023/01/26 21:52
- 数学 【全微分について】 z=f(x,y) の全微分は df=(∂f/∂x)dx+(∂f/∂y)dy と表 1 2023/02/25 05:49
- 数学 解析学の問題がわかりません 1 2023/01/12 22:59
- 数学 解析学の問題がわからず困っています。 2 2023/01/12 23:07
- 数学 問 任意の実数a,bと実数関数f(x)に対して ∮(a→b) |f(x)|dx=0ならばf(x)=0 3 2022/07/17 01:30
- 数学 全微分について質問です。 z=f(x,y)のとき df=(∂f/∂x)dx+(∂f/∂y)dy ∂f 5 2023/02/24 05:46
- 数学 修正して頂いた画像を使用させていただき改めて質問させて頂きます。 画像において、直接fとgのx軸の点 9 2022/08/23 19:17
- 数学 テイラー展開について r↑(x+dx,y+dy,f(x+dx,y+dy))を点(x,y,f(x,y) 4 2023/03/08 01:06
- 数学 f(x,y)=-2y/(x^2+y^2) という関数を不定積分すると、 ∫ -(2y)/(x^2 + 2 2023/06/12 20:25
- 数学 「f(x)とg(x)のグラフで囲まれた面積を求めよ」 という積分の面積を求める典型問題がありますが、 7 2023/06/09 01:16
おすすめ情報
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
a>0、b>0⇔a+b>0、ab>0
-
数学の背理法について質問です...
-
命題「PならばQ」でPが偽ならば...
-
有理数を文字置き→互いに素な整...
-
a.bが定数で任意のε>0に対してa...
-
カントールの対角線論法につい...
-
nは自然数 n^2と2n+1は互いに素...
-
強い仮定、弱い仮定、とは
-
n=3の倍数ならば、n=6の倍数で...
-
背理法について
-
ウェイソン選択課題について悩...
-
「逆もまた真なり」について
-
高校数学、論理
-
数学の論理学的な質問なんです...
-
対偶
-
「ならば」について
-
背理法と対偶証明の違いについて
-
数独 次の一手を教えてください
-
数学の証明の問題です。
-
青チャートに、「命題p⇒qの否定...
おすすめ情報