初歩的な質問ですが、
円錐や三角錐の体積を求める公式が 底面積×高さ×1/3 というのは知っています。
ただ公式として3分の1にするのは知っているのですが、なぜ3分の1にするのかを数学的知識が乏しい(中学校1年生など)にうまく説明する方法はないでしょうか?
できれば、三角形の面積は四角形を半分にすれば求められるから「底辺×高さ×1/2」のようなわかり易いものがありがたいです。

A 回答 (1件)

ema_0222 さん、こんばんは~☆



過去に同様の質問がありますよ。

【錐の体積】

『何で1/3なのかを・・・説明して頂けないでしょうか。』

http://www.okweb.ne.jp/kotaeru.php3?q=88241


ではでは☆~☆~☆

参考URL:http://www.okweb.ne.jp/kotaeru.php3?q=88241
    • good
    • 0
この回答へのお礼

ありがとうございます。参考になりました。
皆さんよく勉強してるんですね~。
「積分」という言葉が出てきたときは、ダメだと思いましたがよく読んでみると分かりやすく書いてありました。

お礼日時:2001/09/12 08:50

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q単位体積重量と密度の違い

 単位体積重量と密度ってどう違うのでしょうか?

 密度=ρ で、単位体積重量=ρg
 
 というだけで、ただ重力加速度が
 かけられているだけという意味な
 のでしょうか?

 工学関係の教科書を読んでいると、どちらも
 よくでてきますが、意味的になにか違うのでしょうか?

Aベストアンサー

物理屋の siegmund です.

密度は (質量)/(体積),すなわち単位体積あたりの質量です.
質量とは,物質の量.
SI単位なら,kg が単位です.

重さ(重量)は,(通常は地球上で)物体に作用する重力の大きさで,
その物体の質量と重力加速度gとの積に等しい.
力の次元をもった量で,SI単位なら,N(ニュートン)が単位です.
N = kg・m・s^{-2}
したがって,単位体積あたり重量は,N/m^3 がSI単位です.

結果的には質問の文にあるように,両者の違いはgがかかっているかどうかです.

物質を月に持っていくと,物質の量は変わらないので質量は不変ですが,
重力加速度が変わるので重量の方は約1/6になります.

9766 さんの比重はちょっと誤解があるようです.
比重は,ある体積の物質の質量を同体積の標準物質の質量で割ったもの.
固体や液体に対する標準物質は,通常は4℃の水ということになっています.
質量÷質量ですから,比重は単位のない量です.
同じ場所で測ればその物質と標準物質の重さの比をとってもよいので
(gがかかるだけだから,割り算の分母分子でgはキャンセルする),
比重という名がつけられたのです.
水は 1 cm^3 でほぼ1gですから,密度を g/cm^3 単位で表すと,
密度の数値と比重の数値は実用上は同じになります.

物理屋の siegmund です.

密度は (質量)/(体積),すなわち単位体積あたりの質量です.
質量とは,物質の量.
SI単位なら,kg が単位です.

重さ(重量)は,(通常は地球上で)物体に作用する重力の大きさで,
その物体の質量と重力加速度gとの積に等しい.
力の次元をもった量で,SI単位なら,N(ニュートン)が単位です.
N = kg・m・s^{-2}
したがって,単位体積あたり重量は,N/m^3 がSI単位です.

結果的には質問の文にあるように,両者の違いはgがかかっているかどうかです.

物質を...続きを読む

Q任意の三角形からその三角形と面積の等しい正三角形をその三角形を使って作図するには??

等積変形の問題なのですがかなり考えたのですがわかりません。どなたかわかれば教えてください。

Aベストアンサー

方べきの定理を使用します。
任意の三角形の1辺をaとし、此に頂点から垂線を下ろします。
垂線の長さをbとする。
面積は、ab/2
正三角形の1辺をcとすると、面積は((√3)c^2/4)
c^2=(2√3)ab/3)
ですので、2a/3の線分を作るには、平行線を利用することにより作図できます。
次に、(√3)bを作図しますが、此は1辺がbの正方形を作図して、対角線をとりますと、(√2)bが出来ます、
此を1辺とし、もう1辺をbとする長方形を作り、この対角線は(√3)bとなります。
これで、(2a/3)と(√3)bの辺の長さが決まりましたので、ここで方べきの定理を使用します。
1点より、同じ方向へ、(2a/3)と(√3)bを直線上にとり、この差の半分の長さで円を描きます(この直線上に円の中心がある)。全ての点は同一直線上にある。
つぎに、最初の1点と円の中心点とを直径とする円を描き、交点と最初の1点を結ぶと、接線となり、此がcとなります。
此を1辺とする正三角形を書けば出来上がりです。
作図をするときにa,bを入れ替えてしても同じ結果になります。

方べきの定理を使用します。
任意の三角形の1辺をaとし、此に頂点から垂線を下ろします。
垂線の長さをbとする。
面積は、ab/2
正三角形の1辺をcとすると、面積は((√3)c^2/4)
c^2=(2√3)ab/3)
ですので、2a/3の線分を作るには、平行線を利用することにより作図できます。
次に、(√3)bを作図しますが、此は1辺がbの正方形を作図して、対角線をとりますと、(√2)bが出来ます、
此を1辺とし、もう1辺をbとする長方形を作り、この対角線は(√3)bとなります。
これで、(2a/3)と(√3)bの辺の長さが決まりまし...続きを読む

Q比熱の単位が体積当たりの場合もあるか?

比熱というと、1gのものを1℃あげるのに必要な熱量という定義です。
ですから、単位はJ/℃・gとかだと思うのですが、
定圧比熱とかいって、単位が1.7KJ/m^3・K っていう、体積あたりのものがでてきました。
一体どういうことなのでしょうか?

比熱は体積あたりで使う場合もあるということでしょうか?

Aベストアンサー

> ノルマル立米です。

ここが肝ですね。
ノルマル立米は体積の単位ではなく、物質量の単位であるということが理解できていればいいわけです。

Q円錐・角錐の体積は「底面積×高さ÷3」になるのはなぜ?

三角形の面積の公式は、「底辺×高さ÷2」です。
「なんで2で割るの?」と聞かれたら、答えは簡単。
「この三角形と同じ三角形を上下ひっくり返してくっつけてごらん。
平行四辺形になったでしょ。この平行四辺形の面積を2で割ればいいんだよ。」

では、円錐・角錐などの錐体の体積は「底面積×高さ÷3」ですが、
なぜ3で割るのでしょうか?

私が昔中学生の頃、へっぽこな数学教師にこれを質問したところ、
「きっと昔の人が円柱と円錐の容器に水を入れて、その量を比べて
3で割る事を発見したんだと思います。
数学的に証明する事は私には分かりませんが、きっと私なんかよりも
ずっと賢い人が証明する手段を知っていると思いますので、大学に
行ってから先生に聞いてみてください。」などとテキトーな事を言ってました。

さて、錐体の体積の求め方を教えていただけますか?
「積分」がキーワードだと思うんですが…。
(ちなみに私はかなり昔に大学の理系を卒業しました)

Aベストアンサー

 積分すれば簡単に出てきます。

例・底面の半径r、高さhの円錐の体積
頂点を原点に、x=hのところが底面の中心になる用の座標を取ると

xのところでの半径は x*r/h で、ここでの面積が π(x*r/h)^2 なので、体積は

∫[0,h]π(x*r/h)^2dx
=(πr^2/h^2)∫[0,h]x^2dx
=(1/3)πr^2h

これは、円柱の体積 πr^2h の 1/3 です。




※中学校の先生は、中学生に積分の説明をするのが無理だと思って「テキトーな事」を言ってたんでしょう。
 まあ、大学の理科系まで行かずとも、高校の積分でできるはなしです。

Q体積の単位(m^3)_Nについて。

体積の単位(m^3)_Nについて。

ある化学関連の書籍を読んでいたところ、体積の単位として(m^3)_N(立方メートルの右下に小さい大文字のN)という見慣れない単位がでてきました。標準状態で使う体積と書かれていたので体積以外に摂氏零度1気圧という条件付きなのだろうと思いましたが、肝心の換算係数が書いてありません。

その前後の計算式を見る限り、dm^3(10センチ立方=1リットル)と同じに見えました。もしそうだとすると記法からの類推で摂氏0度1気圧のときの体積をm^3で表したものと同等ならばまだ納得できそうなのですが、何故(dm^3)_Nでなくて(m^3)_Nなのかが納得できません。

手持ちの化学の本や理科年表を探しても見つからず、ネットで探しても文学的な表現しか見つからなかったのでお聞きします。
(m^3)_Nの厳密な定義を教えてください。

当方、仕事で化学の知識が必要なため、基礎から勉強している者です。
レベルは、はるか昔に高校と大学の教養課程で化学を習ったのですが当時理解できずにいた程度です。

Aベストアンサー

(a)

Q高校数学です。 底面の半径1,高さhの直円錐を,頂点を通る平面で切る。その断面である三角形の面積の

高校数学です。

底面の半径1,高さhの直円錐を,頂点を通る平面で切る。その断面である三角形の面積の最大値を求めよ。


という問題です。どうやって解くのか教えてください。

Aベストアンサー

底面の中心Oからのズレをa とします.
aと頂点を通って,O-aに直角な平面が切断面(赤い三角)となります.
aの値を0~1まで動かして,面積の最大値を求めればよい.

切断面も常に三角形なので,
三角形の底辺は 2×√(1-a^2)
三角形の高さは √(h^2+a^2)

三角形の面積Sは
S= (1/2)×2×√(1-a^2)×√(h^2+a^2)
S=√((1-a^2)(h^2+a^2))
(aの4次式ですが)[a^2]の2次式なので,その最大値を求めればよい
S=√(-a^4-(h^2-1)a^2+h^2)
=√(-a^4-(h^2-1)a^2-((h^2-1)/2)^2 +((h^2-1)/2)^2+h^2)
=√(-( a^2+(h^2-1)/2)^2 +((h^2-1)/2)^2+h^2)
=√(-( a^2+(h^2-1)/2)^2 + ((h^2+1)/2)^2 ) <ここまですべて平方根の中です>

したがって,a^2= -(h^2-1)/2 =(1-h^2)/2 のとき,すなわちa=√(1-h^2)のとき
最大値 (h^2+1)/2
ただし,これはh<=1 の場合

h>1の場合は,a=0のとき最大でS= h

底面の中心Oからのズレをa とします.
aと頂点を通って,O-aに直角な平面が切断面(赤い三角)となります.
aの値を0~1まで動かして,面積の最大値を求めればよい.

切断面も常に三角形なので,
三角形の底辺は 2×√(1-a^2)
三角形の高さは √(h^2+a^2)

三角形の面積Sは
S= (1/2)×2×√(1-a^2)×√(h^2+a^2)
S=√((1-a^2)(h^2+a^2))
(aの4次式ですが)[a^2]の2次式なので,その最大値を求めればよい
S=√(-a^4-(h^2-1)a^2+h^2)
=√(-a^4-(h^2-1)a^2-((h^2-1)/2)^2 +((h^2-1)/2)^2+h^2)
=√(-( a^2+(h^2-1)/2)^2 +((h^2...続きを読む

Q単位格子の体積について

セレン酸カリウム(斜方晶)の単位格子の体積が知りたいです。お願いいたします。

Aベストアンサー

物性系出身ですが、セレン酸カリウムの格子定数等は詳しく分かりません。しかし、斜方晶系なので三辺a,b,cが異なりますので、単位胞の体積はV=abcです。
a,b,cは化学辞典等を漁ってみると良いかもしれません。

Q比例と反比例の問題で、[面積が54平方センチメートルの三角形の、底辺の長さをXセンチメートル高さをY

比例と反比例の問題で、[面積が54平方センチメートルの三角形の、底辺の長さをXセンチメートル高さをYセンチメートルとします。XとYの関係を式に表しましょう。]という問題で、私はX×Y÷2=54と、書いたのですが答えがY=108÷Xになっていました(>_<)誰か訳を教えてくださいm(_ _)m

Aベストアンサー

ちょっと問題が舌足らずだと思います。
三角形の面積ですから、X×Y/2=54 で式は正しいと思います。
ただ比例と反比例の問題ですから、式をYとXの関係がどうなっているのか出題者に解るように直さないといけないですね。

なので
X×Y/2=54
X×Y=54×2
Y=108/X 
と表して、XとYが反比例の関係にあると表す必要が出てきます。

Q単位体積(1m^3)当たりに占める原子の個数

こんにちは、

ある金属(金、銀、銅)の単位体積に、何個の原子があるのか?どうやって計算すれば良いのでしょうか?

Aベストアンサー

単位体積の重さを計算します。それは密度から計算できるはずです。
それをグラム単位で表し、それを原子量で割れば、その原子の物質量(モル数)が計算できます。
1モルの原子数は約0.02x10^23個(アボガドロ数)ですので、それを上記の物質量にかければ原子数が計算できます。

Q三角錐の底面積からの頂点の高さの求め方

分かっているのは。底面積と上面積とそこまでの高さです。おそらく比を使うと思うのですが、よろしくお願いします。

Aベストアンサー

>おそらく比を使うと思うのですが
 その通りです。

底面積をS、上面積をT、底面から上面までの高さをh、
底面から頂点までの高さをxとすれば
S:T=x^2:(x-h)^2
が成り立ちます。
すべて正なので平方根をとって計算すれば
x=h√S/(√S-√T) となります。


人気Q&Aランキング

おすすめ情報