
No.4ベストアンサー
- 回答日時:
>難しそうですが、解決される可能性はあるのでしょうか?
難しいですね。1971年から約35年、世界中の研究者たちがトライしていますが、未だ解決していなく、懸賞金もかかっていますね。
そのため、P≠NPであると、現在では言われています。ですが、これもP=NPであるということを証明するのと同様に、証明されていません。
難しいですが、フェルマーの最終定理のように、そのうち誰かがパッと解いちゃう可能性もあります。
*フェルマーの最終定理とは、17世紀の天才数学者がフェルマーが世に投げかけた問題で、x^n+y^n=z^n(n≧3)以上となるようなものは存在しないというものを証明する問題です。
彼は、問題を解くと本の片隅に書く癖があって、この問題も同様に片隅に書こうとしましたが、分量が多すぎて、とても片隅には書けないと残したまま亡くなってしまい(現在では、彼には解けていなかったという意見が大多数を占めています)、それから300年以上もの間世界中の天才数学者たちを悩ませました。
1987年から8年かかって研究し続けた天才数学者ワイルズによって、200ページに渡る証明式で、ようやく証明された問題です。
これを機会に、興味を持たれたのなら、色々検索してみてください。そして、是非チャレンジしてみてください。ひょっとすると、貴方がP=NPであることを証明するかもしれませんよ。
No.5
- 回答日時:
#3の
> このようなNP問題は現在巡回セールスマン問題以外にも、100近く存在し、
> もし一つでも解けたらノーベル賞ものです。
という見解にコメントします。
「一つでも解けたら」というより「一つ解けたら全て解けたも同然」なのですね。
巡回セールスマン問題をはじめとするNP-hardに属する問題は、
お互いに多項式時間で帰着可能という性質を持っていますから、
一つが解ければ、さらに多項式時間をかけることで、
NP-hardに属するすべての問題が解けるということです。
100近く(100以上?)もあるといわれているNP-hardに属する問題に
世界中の学者が挑みながら、どれ一つとして多項式時間の解法が
完成されないという事実が、P≠NPではないかという予想の
信憑性を高めているわけです。(しかし証明はされていません)
ちなみに、NP-hardに属する問題といっても、全組み合わせを列挙するしか
方法がないわけではありません。全列挙では30都市も無理というのは
#3でかかれている通り事実ですが、現在では、効率的な解法の研究により
1万数千都市問題を厳密に解いたという例があります。
No.3
- 回答日時:
専門的なことなので、凄く簡単に説明すると、Pは現実的な時間で解ける問題、NPは現実的な時間で解けないと言われている問題のことです。
例えば、巡回セールスマン問題というものがあります。この問題は、N都市あって、ある都市から出発して、すべての都市を一度も重複せずに回って最初の都市に戻る最短の距離はどれかという問題です。
例をあげると、東京、大阪、北海道、沖縄の4都道府県をどう回れば最短距離になるかということです。
これは、全部の通り方を調べれば必ず答えを見つけることが出来ます。ですが、たった30都市になるだけで、現在ある最高のスーパーコンピュータでも、全通りを計算するのに何百兆年とかかってしまいます。
とても現実的な時間では解けないので、NP問題と言われています。
逆に、解の公式など、公式によって現実的な時間で解ける問題がP問題なのです。
それで、仮定されていることが、NP問題は実はP問題であるということです。つまり、現在NP問題と言われているものには、現実的な時間で解くための公式が存在し、P=NPになるという仮定です。
このようなNP問題は現在巡回セールスマン問題以外にも、100近く存在し、もし一つでも解けたらノーベル賞ものです。世の中も、例えばこの巡回セールスマン問題がP問題と分かったら、最短経路が関係するあらゆるものが画期的になるでしょう。
No.2
- 回答日時:
P とか NP というのは, それ自身で集合を表す記号です.
P というのは「多項式 (polynomial)」で, 「決定性多項式時間アルゴリズムが存在する (簡単にいうと, 与えられた問題例が特定の条件を満たしているかどうかが, 問題例の大きさの多項式で表現できる時間で判定できる)」問題の集合です.
一方, NP は「非多項式 (non-polynomial)」ではなく「非決定性多項式 (nondeterministic polynomial)」で, 「非決定性多項式時間アルゴリズムが存在する」, 言い換えると「問題例と『適切なヒント』が与えられたときに, 問題例が特定の条件を満たしているかどうかが問題例の大きさの多項式で表される時間で判定できる」問題の集合.
ちなみにこの P = NP 問題を解決したとしてもノーベル賞はもらえない (というかノーベル賞にそんなカテゴリーがない) のであしからず. Cray Research からの賞金と京都賞は間違いないでしょうが.

No.1
- 回答日時:
簡単に言うと、難しい問題が、
P「多項式(Polynominal)に比例した時間で解けること」
と
NP「非多項式(Non-Polynominal)に比例した時間で解けること」
が同じがどうかという問題です。
多項式とはxのn乗(xが変数でnが定数)の形、
非多項式とはたとえば指数nのx乗(xが変数でnが定数)の形です。
xが大きくなるにつれて、非多項式の方が早く値が大きくなります。
世の中的には、NP=Pということが証明されれば、今まで指数時間かけないと解けなかった問題が、多項式時間で<画期的に早く>解けることが証明されるわけですから、世の中は一変し、ノーベル賞?間違いなしです。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 『完全<困難』 2 2022/11/28 06:36
- 数学 『4色問題③』 2 2022/11/14 00:31
- 統計学 統計学 二項分布の正規近似について 2 2023/02/10 11:58
- 計算機科学 判定問題がPに属するなら探索問題はNPに属する。では判定問題がNPに属するとき探索問題は? 2 2023/05/20 19:10
- 世界情勢 慰安婦問題についてです。 大学の講義にて日韓での慰安婦問題の真の和解をするには?という課題が出されま 13 2023/01/23 23:03
- その他(ニュース・時事問題) 日本の社会問題 8 2022/09/02 09:49
- 政治学 くそ安倍の国葬 15 2022/09/07 12:06
- 政治 30年近く自公政権やってきて日本の国際問題が1つも未解決。これはもう解決放棄ですね? 2 2022/07/28 21:46
- その他(悩み相談・人生相談) この世には問題が多過ぎる件。 この世の多過ぎる問題は解決するのでしょうか。 そして中には、人間が人間 3 2022/05/08 17:31
- 政治 なんでまだマスク付けてるの? 34 2023/05/08 14:08
今、見られている記事はコレ!
-
弁護士が語る「合法と違法を分けるオンラインカジノのシンプルな線引き」
「お金を賭けたら違法です」ーーこう答えたのは富士見坂法律事務所の井上義之弁護士。オンラインカジノが違法となるかどうかの基準は、このように非常にシンプルである。しかし2025年にはいって、違法賭博事件が相次...
-
釣りと密漁の違いは?知らなかったでは済まされない?事前にできることは?
知らなかったでは済まされないのが法律の世界であるが、全てを知ってから何かをするには少々手間がかかるし、最悪始めることすらできずに終わってしまうこともあり得る。教えてgooでも「釣りと密漁の境目はどこです...
-
カスハラとクレームの違いは?カスハラの法的責任は?企業がとるべき対応は?
東京都が、客からの迷惑行為などを称した「カスタマーハラスメント」、いわゆる「カスハラ」の防止を目的とした条例を、全国で初めて成立させた。条例に罰則はなく、2025年4月1日から施行される。 この動きは自治体...
-
なぜ批判コメントをするの?その心理と向き合い方をカウンセラーにきいた!
今や生活に必要不可欠となったインターネット。手軽に情報を得られるだけでなく、ネットを介したコミュニケーションも一般的となった。それと同時に顕在化しているのが、他者に対する辛らつな意見だ。ネットニュース...
-
大麻の使用罪がなかった理由や法改正での変更点、他国との違いを弁護士が解説
ドイツで2024年4月に大麻が合法化され、その2ヶ月後にサッカーEURO2024が行われた。その際、ドイツ警察は大会運営における治安維持の一つの方針として「アルコールを飲んでいるグループと、大麻を吸っているグループ...
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
(x-1)(x-2)(x-3)の展開の...
-
(x+3)(x-3)(x^4+9x^2+81)の展開...
-
最小公倍数と最大公約数の問題...
-
多項式について質問です。 エク...
-
[2]の方法でα,β,γ...が求まらな...
-
余次元って何?
-
組立除法 1次式 ax-k の係数...
-
斉次とは?(漢字と意味)
-
Qバー={α⊂C| αがQ上代数的...
-
塾での問題なんですが・・・至...
-
微分の3次近似多項式について少...
-
エルミート補間について
-
今更だけど
-
単項式と分数式の違いについて
-
ガロア拡大体に関すること
-
テイラー展開、公式
-
AESのアフィン変換導出
-
(1+x)^n=1+nxについて
-
e^sinXの展開式について。。。
-
データのノイズ除去法 - Savitz...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
カーフェリーにクルマで乗船時...
-
多項式について質問です。 エク...
-
単項式と分数式の違いについて
-
(x-1)(x-2)(x-3)の展開の...
-
(x+3)(x-3)(x^4+9x^2+81)の展開...
-
(x+y+2z)(2x+3y-z)(4x-y-3z)を...
-
余次元って何?
-
なぜ、2変数以上の多項式を因数...
-
約数と因数の違い(∈N)
-
斉次とは?(漢字と意味)
-
単項式とは
-
データのノイズ除去法 - Savitz...
-
べき乗表現と多項式表現
-
等差×等比 型の数列の和を求め...
-
CRCのアルゴリズムって、どんな...
-
問題が理解できません
-
M系列の生成多項式と原始多項式...
-
数学 因数分解 X^3+x^2+x−1 ...
-
e^sinXの展開式について。。。
-
(1+x)^n=1+nxについて
おすすめ情報