
No.1ベストアンサー
- 回答日時:
Σn(95-3n)/2
について、
(Σn(95n-3))*1/2
=(95/2)Σn^2-(3/2)Σn
となりますね。分けて考えると・・
シグマの公式から、二分の一をまず外に出して考えると、
(1/2)[(95/2)n(n+1)-(3/6)n(n+1)(2n+1)]
これを因数分解します。
(1/4)[n(n+1)(95-2n+1)]
=(1/4)[n(n+1)(96-2n)]
ここで、カッコの中について考えればOKですね。
ちなみに参考URL、公式の憶え方参考にしてください。
参考URL:http://www.d2.dion.ne.jp/~hmurata/goro/s-koushik …
この回答へのお礼
お礼日時:2001/12/09 01:32
有難うございました。カッコの中だけ計算すればよい、というエレガント!?な解き方を教えてくださって有難うございました。私が思うには、自分は計算ミスをただしていたと思います。今後、それをなくしていきたいと思います。
No.4
- 回答日時:
kony0さんのご回答にもありますように、数列の和の最大・最小を求めるにはこんな方法もあります。
Tnを最大にするnの値をiと置いてみます。
その上でTi-T(i+1)と、Ti-T(i-1)を作ってみます。
iを一つ増やした/減らしたときにTnの値が増えるか減るかを調べるわけです。もしn=iでTnが極大なら、Ti-T(i+1)、Ti-T(i-1)とも正の値になるのはすぐにお分かり頂けると思います。(iが最初の条件を満たさなければ、Ti-T(i+1)、Ti-T(i-1)のどちらかは負の値となる)
さっそく式を作ってみると
Ti-T(i+1)=-(i+1)(95-3i-3)/2 (1)
Ti-T(i-1)=i(95-3i)/2 (2)
となります。(うち消せない最後の1項が残るだけですが)
(1)>0, (2)>0とおいて、連立させて不等式を解けばよいわけです。(両方とも本質的に同じ方程式ですが)
(2)から 0<i<95/3 と求められます。
(1)は i<-1または92/3<i と出てきます。
両方を満たす正整数iは31しかありませんから、n=31で極大になるはずです。
さて、ここまででは、n=31でTnが「極大」であることしか言えません。最大であることまで言うには(1)が1≦i<31で常に負であること(すなわち、Tnがnに対し単調増加)、(2)が31<iで常に負であること(すなわち、Tnがnに対し単調減少)であることを補足しなければなりません。
これらは式(1)(2)を見ればほとんど自明ですから証明はいりませんが、一言書く必要はあります。
*計算間違いをしているかも知れませんので、式をご自身でチェックしながら読んでいただければ幸いです。
No.3
- 回答日時:
最大値をとるnの出し方のほうがわかっていなさげですね。
これはアイデアがあったかどうかにつきます。
つまり、S_kが正か負かを考えればよいということです。
ヒントはT_k - T_{k-1} = S_k となることです。
ぶっちゃけてしまうと、自然数kに対して、k<=31ならばS_k>0, K>=32ならばS_k<0なので、
31個目まで足してもT_nはどんどん増えていきますけど、32個目以上のものを足していくと、T_nはどんどん減ってしまう。だから31個目まで足すことにしよう・・・という寸法です。
おそらくvikkyiさんの考え方は、T_nを計算して微分して・・・とやったんだろうと思います。それはもちろん考え方としてひとつも間違っていないんですが、他にも方法があるということで。(微分ではなくて「差分」を考えてるということになります。高校の教科書上、差分という言葉は出ないだろうし、あまり意識していないかもしれませんが、よくやる手法です。[あとは隣接2項間の比をとるとか])
#ちなみにnの「方程式」というのは間違いですね。nが連続の値をとると仮定して、「関数」の極大値(定義域が正の範囲における最大値)を求めようとした、ということでしょう。
No.2
- 回答日時:
#1です。
続きを・・
括弧の中について、展開すると
-2n^3+94n^2+96であります。
これの最大値と最小値を求めるには微分して0とおきます。
微分すると、
-6n^2+188n
となるので、これを0とおくと
-6n^2+188n=0
3n^2-94n=0
3n(n-94/3)=0
n=0、94/3
が解となります。ただし、nは2より大きい整数のはずですね。
なので、これに近い自然数すなわち、31(=93/3)が解となると考えられます。
このときの答は8432ですね。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
log(1+x)の微分
-
サイン二乗xの微分を教えてく...
-
3階微分って何がわかるの??
-
2階微分d^2y/dx^2を詳しく教え...
-
二回微分して 上に凸下に凸 が...
-
f(x)=(x^2)(e^2x)のn次導関数に...
-
2階の条件・・
-
これらの数式を声に出して読む...
-
f(x)=0はxで微分可能か
-
y=1/(2x-1)を微分する方法につ...
-
逆三角関数のn回微分
-
2問とも分からないので教えてほ...
-
授業で「yをxで微分する」とい...
-
三角関数の微分の問題なんです...
-
数学の微分の問題で困っています。
-
cosx/sinxの微分を教えてください
-
一点だけで微分可能な関数
-
デルタの意味
-
n回導関数の問題がわかりません
-
sinx^2の微分って2xcosx^2であ...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
サイン二乗xの微分を教えてく...
-
授業で「yをxで微分する」とい...
-
log(1+x)の微分
-
2階微分d^2y/dx^2を詳しく教え...
-
-1/(1-x)の微分を教えて下さい
-
これらの数式を声に出して読む...
-
3階微分って何がわかるの??
-
sinx^2の微分って2xcosx^2であ...
-
y^2をxについて微分してください
-
y=e^x^x 微分 問題
-
分母が文字の分数を微分する方...
-
y=logxA(Aは定数)をxで微分
-
lim[x→0](e^x - e^-x)/x
-
三角関数の微分の問題なんです...
-
微分積分を理解できない人って...
-
z = x^y の偏微分
-
逆三角関数のn回微分
-
二回微分して 上に凸下に凸 が...
-
y=1-sinxを微分せよ
-
デルタの意味
おすすめ情報