No.2ベストアンサー
- 回答日時:
chestnutさん、改めましてこんにちは。
さてBessel関数J_n(x)の次数n、これはモードと関係はするのですが関係の仕方がちょっと複雑です。
2次元円形膜の振動はご承知のように、半径方向の関数R(r)と角度方向の関数Θ(θ)に変数分離をして解きますが、R(r)とΘ(θ)のモードはバラバラに決めてよいわけでないのです。
角度方向の関数は
1(定数)・・・0次 角度方向はどこでも同じ値
sin θ・・・1次 角度方向に一周くるりと回ると、節が二つある
sin 2θ・・・2次 角度方向に一周くるりと回ると、節が四つある
sin 3θ・・・3次 角度方向に一周くるりと回ると、節が六つある
・
・
となるわけですが、角度方向が0次の振動の場合、半径方向の関数R(r)は、0次のBessel関数J_0(x)と自動的に決まります*。
ただし関数のグラフを見て既にお分かりのように、J_0(x)=0となるようなx(=振動の節となる点)は無数に存在しますから、それらのどれを膜の境界に合わせるか(合うか)によって半径方向にも多くのモードが存在することがお分かり頂けると思います。
同様に角度方向が1次の振動の場合は、半径方向の関数R(r)は、1次のBessel関数J_1(x)と決まります。この場合も同様に、J_1(x)=0となるようなxは無数に存在し、モードも無数にあることになります。
すなわち2次元円形膜の振動のモードは、
(1)角度方向の次数nと、
(2)それにより決まるBessel関数J_n(x)で、J_n(x)=0となるxのどれが境界に当たるかによって決まる次数m
の二つで特定されます。
http://www.ep.sci.hokudai.ac.jp/~minobe/mth2ex/
の一番下に「1999講義ノート」というリンクがあり、pdfでダウンロードできるようになっています。モードの図などもあり大変分かりやすいので参考にされると良いと思います。70ページある大作ですが、そのうちの54ページ辺りから読んでみてください。
--------
*角度方向の次数と、Bessel関数の次数を無関係に決められないことは以下のように考えるとすぐ分かります。
2次元円形膜の振動を考え、仮に例えば半径方向の関数がa×J_0(x)、すなわちnに関し0次で、角度方向の関数がsin θ(n=1)だとします(aはある定数)。xは正規化半径に相当します。J_0(x)はx=0で有限のある正の値をとることに注意。
次に0よりわずかに大きい正の値δを考え、θ=0の点とθ=πの点とで位相を含めて振幅を比較します。x=δ、θ=0の点で振幅はa×J_0(δ)、x=δ、θ=πの点では位相がπだけ反転しますから振幅は-a×J_0(δ)になります。δはどんどん0に近づけて構わないわけですが、そうするとθ=0の側から膜の中心に近づいた場合とθ=πの側から近づいた場合では、膜の中心において振幅の不連続が発生することになります。これは直感的にもおかしいことが分かります。
J_0(x)は角度方向の関数が定数である場合(角度方向の次数も0)にのみ当てはまる、というわけです。
No.1
- 回答日時:
1次元の棒や弦の振動に関する微分方程式を解いた時、最後にその振動の様子を表すのにサインやコサインを使いますよね。
2次元の膜(縁が円であるもの)の振動も同様のやり方で解けてその振動の様子も表せるはずなんですが、サインやコサインでは表せないため、サインやコサインの代わりにBessel関数を使います。コサインやサインと同じように変数の変化につれて振動する関数ですが、振動の周期や振幅がだんだんと変化するところが違います。
なぜこんな関数と持ち出すのか? もちろんサインやコサインで用が足りればそちらの方が助かるのですが、2次元の円膜や円筒の振動はこの関数を使わないと表現できないからです。(むしろ、円膜の振動を解いた時に必然的に行き当たるこの一連の関数をBessel関数と名付けたという方が当たっていそうです)
この関数のグラフは下記のページなどでごらんください。数式とにらめっこするよりグラフを見た方が早いです。
定義式についてはちょっとここで書くのは大変なので、微分方程式の教科書か理化学辞典などをご覧下さい。
「関数美術館」
http://www.geocities.co.jp/SiliconValley-PaloAlt …
「gnuplotで描いたサンプル」
http://funada11.denshi.numazu-ct.ac.jp/sei/sotsu …
参考URL:http://www.geocities.co.jp/SiliconValley-PaloAlt … http://funada11.denshi.numazu-ct.ac.jp/sei/sotsu …
ありがとうございました。
本当に助かりました。
もうひとつだけ、いいでしょうか。
このいくつかの条件があるようですが、
これは虚数か何か関係しているのでしょうか。
振動の「モード」に当たるようなものでしょうか?
よければ、教えていただけませんか?
簡単に書いてある本が見つけられず、本当に助かりました。
理解して勉強を進められそうです。ありがとうございました。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
見学に行くとしたら【天国】と【地獄】どっち?
みなさんは、一度だけ見学に行けるとしたら【天国】と【地獄】どちらに行きたいですか? 理由も聞きたいです。
-
歳とったな〜〜と思ったことは?
歳とったな〜〜〜、老いたな〜〜と思った具体的な瞬間はありますか?
-
モテ期を経験した方いらっしゃいますか?
一生に一度はモテ期があるといいますが、みなさんどうですか? いまがそう! という方も、「思い返せばこの頃だったなぁ」という方も、よかったら教えて下さい。
-
この人頭いいなと思ったエピソード
一緒にいたときに「この人頭いいな」と思ったエピソードを教えてください
-
今から楽しみな予定はありますか?
いよいよ2025年が始まりました。皆さんには、今から楽しみにしている予定はありますか?
-
ベッセル関数について
数学
-
ベッセル関数が難しく
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~1/20】 追い込まれた犯人が咄嗟に言った一言とは?
- ・洋服何着持ってますか?
- ・みんなの【マイ・ベスト積読2024】を教えてください。
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・【選手権お題その3】この画像で一言【大喜利】
- ・【お題】逆襲の桃太郎
- ・自分独自の健康法はある?
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・ちょっと先の未来クイズ第6問
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
Rの計算式を教えてください。
-
ベッセル関数って、
-
二点間を通り半径Rの中心点を求...
-
3配位の限界半径比の求め方
-
球の表面積から半径を求める方...
-
楕円の先端半径について教えて...
-
製図上の”R”について
-
AutoCADで4辺の長さが違う4角...
-
球の1周は4π
-
角丸四角で角の丸みや線の太さ...
-
螺旋の周長の求め方
-
円錐台の展開図の書き方を教え...
-
下の図において、直線ABは円O、...
-
螺線(らせん)の長さ(ピッチ...
-
球の表面積の微分8πr には?
-
一つの円において、弦が等しい...
-
何故正六角形がかけるのでし...
-
楕円の半径の求め方
-
螺旋の展開図
-
ドームの屋根の表面積の求め方
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報