No.4
- 回答日時:
仮に、0でない有理数÷無理数=有理数としてみましょう。
a,b,c,dを0でない整数として
(a/b)÷無理数=c/d
とすると、
無理数=(a/b)*(d/c)=ad/dc=有理数
となって、矛盾してしまいます。
なので、0以外の有理数÷無理数=無理数です。
ありがとうございました。証明はできたのですがじぶんだけのこたえでは確証がもてなかったのですが皆さんの答えをみてあっているようなのですっきりしました。ありがとうございます
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- その他(社会・学校・職場) 28歳職歴なし、バイト歴無しのこれまでと今後 11 2022/11/22 06:26
- 数学 ある無理数に限りなく近い有理数は無理数ですか、有理数ですか。 13 2023/01/31 11:18
- 数学 当方高校生ですので、高校数学で理解出来る回答をお願いします。 実数係数の3次式f(x)で、 ・f(x 2 2022/10/07 18:38
- 数学 極限が無理数とか有理数になる 5 2023/02/19 04:07
- 高校 有理数÷有理数は絶対有理数なんですか? 理由とともに教えていただきたいです! 5 2022/05/29 12:12
- 数学 無理数の数字の組み合わせ。無限の意味について 5 2022/05/28 22:53
- 数学 教科書が書き換わりますか 10 2023/06/15 18:58
- その他(職業・資格) 来年、仕事の都合でエネルギー管理士の資格試験を受験しようと考えているのですが、難易度について教えて下 1 2022/09/24 12:14
- 数学 数学の質問です。写真の命題の否定の問題の(3)についてですが、無理数を有理数に変えたり変えたりしない 1 2022/08/03 18:56
- 数学 これって正しいんじゃないの? 「無理数を小数で表現すると、小数点以下に数字が無限に続きますが、それら 5 2022/05/29 23:56
このQ&Aを見た人はこんなQ&Aも見ています
-
これまでで一番「情けなかったとき」はいつですか?
これまでの人生で一番「情けない」と感じていたときはいつですか? そこからどう変化していきましたか?
-
あなたにとってのゴールデンタイムはいつですか?
一週間の中でもっともテンションが上がる「ゴールデンタイム」はいつですか? その逆で、一週間でもっとも落ち込むタイミングでも構いません。 よかったら教えて下さい!
-
土曜の昼、学校帰りの昼メシの思い出
週休2日が当たり前の今では懐かしい思い出ですが、昔は土曜日も午前中まで学校や会社がある「半ドン」で、いつもよりちょっと早く家に帰って食べる昼ご飯が、なんだかちょっと特別に感じたものです。
-
この人頭いいなと思ったエピソード
一緒にいたときに「この人頭いいな」と思ったエピソードを教えてください
-
【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
【お題】 ・このサンタクロースは偽物だと気付いた理由とは?
-
有理数÷有理数は絶対有理数なんですか? 理由とともに教えていただきたいです!
高校
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~11/22】このサンタクロースは偽物だと気付いた理由とは?
- ・お風呂の温度、何℃にしてますか?
- ・とっておきの「まかない飯」を教えて下さい!
- ・2024年のうちにやっておきたいこと、ここで宣言しませんか?
- ・いけず言葉しりとり
- ・土曜の昼、学校帰りの昼メシの思い出
- ・忘れられない激○○料理
- ・あなたにとってのゴールデンタイムはいつですか?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・プリン+醤油=ウニみたいな組み合わせメニューを教えて!
- ・タイムマシーンがあったら、過去と未来どちらに行く?
- ・遅刻の「言い訳」選手権
- ・好きな和訳タイトルを教えてください
- ・うちのカレーにはこれが入ってる!って食材ありますか?
- ・おすすめのモーニング・朝食メニューを教えて!
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・秘密基地、どこに作った?
- ・【お題】NEW演歌
- ・カンパ〜イ!←最初の1杯目、なに頼む?
- ・一回も披露したことのない豆知識
- ・これ何て呼びますか
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・これ何て呼びますか Part2
- ・許せない心理テスト
- ・この人頭いいなと思ったエピソード
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・好きなおでんの具材ドラフト会議しましょう
- ・餃子を食べるとき、何をつけますか?
- ・あなたの「必」の書き順を教えてください
- ・ギリギリ行けるお一人様のライン
- ・10代と話して驚いたこと
- ・大人になっても苦手な食べ物、ありますか?
- ・14歳の自分に衝撃の事実を告げてください
- ・家・車以外で、人生で一番奮発した買い物
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
n=3の倍数ならば、n=6の倍数で...
-
「逆もまた真なり」について
-
命題の真偽の問題で 命題〇〇に...
-
数学での背理法について
-
a,bが有理数として√6が無理数を...
-
nは自然数 n^2と2n+1は互いに素...
-
カントールの対角線論法につい...
-
x,yが互いに素なとき、x+y/2とx...
-
有理数を文字置き→互いに素な整...
-
虚数単位i について「i =√-1<=>...
-
nが自然数のとき、2^n +1 +3^2...
-
背理法について質問があります...
-
数学的帰納法の根本的な疑問な...
-
数Ⅰの問題です x,yは実数、nは...
-
背理法について
-
以前も質問させていただいたの...
-
a>0、b>0⇔a+b>0、ab>0
-
ウェイソン選択課題について悩...
-
有理数÷無理数=??
-
ユークリッド幾何学にまつわる...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
命題「PならばQ」でPが偽ならば...
-
数学の背理法について質問です...
-
n=3の倍数ならば、n=6の倍数で...
-
命題論理に関する英単語
-
a>0、b>0⇔a+b>0、ab>0
-
「逆もまた真なり」について
-
命題を証明せよとはどういう意...
-
強い仮定、弱い仮定、とは
-
ウェイソン選択課題について悩...
-
「逆は必ずしも真ならず」の証...
-
数学の論理学的な質問なんです...
-
数Ⅰの問題です x,yは実数、nは...
-
高校数学です!m,nを整数とする...
-
a,bが有理数として√6が無理数を...
-
背理法と対偶証明の違いについて
-
数学の証明問題
-
数学で出てくる十分性と必要性...
-
nが自然数のとき、2^n +1 +3^2...
-
青チャートに、「命題p⇒qの否定...
-
x≠1⇒xの二乗≠1の真偽
おすすめ情報