
No.3ベストアンサー
- 回答日時:
私はPlanck-Einstein関数と書きましたが(そう書く本もあります)、Einsteinの比熱の式と思って下さい。
固体について単一の振動数を仮定したものです。(因みにこれを改良してDebyeの比熱の式も有名です。)式としてはP=(u^2 e^u)/(e^u -1)^2 (ここでu=θ/T=hν/kT)という形です。
さて、分子の場合は振動モードに固有振動数があるので、Einsteinの式が正確な式として使えます。これにより比熱の式は直線分子なら
Cv=R(5/2 +ΣP(θ/T))
非直線分子なら
Cv=R(3+ΣP(θ/T))
となります。
ここでΣは、分子を構成する原子の個数をnとして、直線なら3n-5個、非直線なら3n-6個について足し合わせます。ここで引いている5とか6の数は、並進の自由度と回転の自由度を足したものです。
No.2
- 回答日時:
完全気体の並進運動のエネルギーは(3/2)RTですので、定積条件で温度で微分すれば(3/2)Rとなり、これが比熱への寄与です。
回転は単原子分子なら寄与ゼロ、直線分子の場合、主軸が回転軸に直角で、かつ互いに直角な2本ですので(2/2)Rが比熱への寄与です。非直線分子は主軸を3つとれますので、(3/2)Rが比熱への寄与です。従って定積比熱の並進と回転の寄与をあわせた比熱は、単原子分子は(3/2)R, 直線分子は(5/2)R, 非直線分子は3Rとなります。(定圧比熱は定積比熱+Rです。)
振動の比熱への寄与の扱いは、たとえばPlanck-Einstein関数という普遍関数で評価できます。ある振動jの特性温度をθjとしたとき、T/θで表せる関数P(T/θ)を使って、比熱への寄与をRΣP(T/θj)で計算します。定温ではPはゼロ、高温では一つの振動モードあたりRになります。
なお、T/θ=2, 1, 0.5, 0.25, 0.125に対してPの値は 0.979, 0.928, 0.724, 0.303, 0.022となります。
2原子分子なら振動は一つしかありませんが、このθは水素、酸素、窒素、一酸化炭素でそれぞれ6100 K, 2250 K, 3350 K, 3080 Kですから、こうした例では室温付近での寄与はないと判定できます。
No.1
- 回答日時:
内部エネルギーの表現が必要です。
簡単なモデルで計算できるのは単原子分子のの場合です。定積比熱は3R/2になります。定圧比熱は5R/2です。この3はx、y、zの3方向の自由度の3から来ています。運動の自由度の数だと考えられます。3(R/2)です。それなら二原子分子の場合はということで、運動の自由度を5(並進3、回転2)として5(R/2)を予想します。原子間の距離が変わらないとする剛体モデルだということになります。割とよく実験に合います。1自由度当たりR/2です。内部エネルギーで言うとRT/2です。エネルギーの等配分則と言います。これを3原子分子に当てはめます。2ヶ所ある結合の長さが変わらないとすると自由度は7になります。
2原子分子の原子間結合は温度が高くなると振動し始めるでしょう。
理科年表に水素ガスH2の定圧比熱Cpと比熱比γ(=定圧比熱/定積比熱)が温度を変えて載っていました。
0℃ 28.38J/moL(γ=1.410)
100℃ 28.72 (1.404)
400℃ 29.56 (1.39)
で値が大きくなっています。エネルギーが原子間の伸縮振動に渡されていることによるものだと考えられます。
3原子分子だと角振動がどの程度起こるかが問題でしょう。分子によって値がかなり変わりそうです。
理科年表には他の分子の値も載っています。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
ショットキー比熱の定性的な意味
-
物質の比熱の温度による違い
-
ヤフコメ民っていったい誰に向...
-
熱容量とエントロピーの違いに...
-
エネルギー保存則(位置エネル...
-
比熱とcalについて
-
混合気体の比熱比について
-
統計力学:比熱の低温・高温近...
-
物理基礎、滝の水の温度上昇に...
-
食物性油と動物性油の比熱
-
60度のお湯と20度の水
-
ヘリウムの熱伝導率が高いわけ。
-
灯油の燃焼発熱量
-
比熱を決めるものは何?
-
98℃のお湯1リットルに対し、何...
-
比熱の差の要因は何ですか?
-
鉄の比熱は0.435J/g・Kでアルミ...
-
熱量と比熱(熱量保存の法則)...
-
熱容量と比熱の問題です
-
タンパク質と脂質と炭水化物の比熱
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報