
高2なのですが、軌跡の問題の解答の仕方について2つ質問があります。
(1)
チャートで勉強してますが、最後に、「逆」についての記述が入ってますよね。
「その図形上の点が条件を満たしていることを確かめる。」
とありますが、なぜそれをする必要があるのかイマイチわかりません。
(2)
記述の仕方について質問なのですが、チャートでは例えば、
「逆に、円(1)上の任意の点は上の計算を逆にたどることによって条件を満たすことがわかる。」
としていますが、学校の先生は、
「逆も成り立つので、」
と書くだけで良いと言われました。
もし国立二次や模試で軌跡の問題が出たとき、先生の言うように、
「逆も成り立つので」
だけで済ませて、減点とかされませんか?
よろしくお願いします。
A 回答 (2件)
- 最新から表示
- 回答順に表示
No.2
- 回答日時:
(1)
>>なぜ(逆)を確かめる必要があるのか。
一般に、(式変形)は(同値変形)ではありません。
一般には、(式変形)は(必要条件)に変形されます。
(同値変形)の例は、
A (x/3)-2=(x/6)
2x-12=x
x=12
(同値変形ではない例は)
BB x=1
X^2=1 (x=1,-1)
x^4=1 (x=1,-1,i,-i)
BBB x+2=√(x+4)
(x^2)+4x+4=x+4
x(x+3)=0
x=0(解)、x=-3(無縁解)
ここまでは理解されているはずです。
(軌跡)でも、同じです。
(同値変形)の例は、
AA 定点Aと動点Pの中点Mの軌跡。
(同値変形ではない例は)
BBBB
x=(1-(t^2))/(1+(t^2))
y=(2t)/(1+(t^2))
(x^2)+(y^2)
= (((1-(t^2))/(1+(t^2)))^2)+(((2t)/( 1+(t^2) ))^2)
=((1+2(t^2)+(t^4)))/((1+(t^2))^2)=1
(x^2)+(y^2)=1
ここで軌跡の限界である(-1,0)除く事になる。
x=-1 に対応する、t は存在しない。
両辺を二乗すると、同値が崩れる。
しかし必ずしもそうとは言い切れない。
二乗するする前の両辺が非負ならば、同値は崩れない。
BBBBは二乗が原因ではなく、smartに t を消去
している事に原因があると思う。
記憶が曖昧ではあるが、地道に消去すると、どこかで
割り算が発生した気がする。
割り算による、軌跡の限界の例は、
BBBBB
x+Ky+K=0, Kx-y+3=0,の交点の軌跡を求める問題で、
Kを消去する時に、文字で割る必要が生じその時、
限界が判明して、(0,-1)を除いたように思う。
C
同値が崩れているように見えて、(逆)が成立する例は、
2点からの距離の和が一定となる点の軌跡。
つまり、楕円の軌跡。
教科書では、
(逆の証明は省略)とか(逆の証明に言及さへしていない)、
場合もあるようです。
と書いたが、書きすぎだった。
現行では、楕円は数学C・・・。
(2)
>>「逆に・・・条件を満たすことがわかる。」
>>「逆も成り立つので。」
同じ事だから「逆も成り立つので。」の方が簡明と思う。
しかしながら、そんな事よりは、
入学試験で、
「逆も成り立つので。」 で済まされる出題はないと思う。
出題の意図を読み取らねばならないし、
問題文の文脈にも依存するするので、
一概には何も言えないが、
A,AAの時は、(逆)について言及する必要がないと思う。
BBB,BBBB,BBBBBの時は、無縁解や軌跡の限界を、
明示するので、これもまた言及する必要がないと思う。
俄かには思いだせないが、
確かに、(逆)を明示的に証明しないと、大減点される問題は、
存在する。
「逆も成り立つので。」ですまされる出題は、
余りにも、自明な場合。
A,AAよりはやや複雑な場合。
「逆も成り立つので。」が通用するのは、
出題者が、
自明ではあるが、(逆)に言及して欲しいと思っていて、
解答者が、
”私は(逆)が成立する事を知っていますが、詳細に述べる必要はないと思います。” と書く替わりに、
「逆も成り立つ」 と 書くのだと思います。
No.1
- 回答日時:
質問の意味がとりにくいことと、私自身が現在のチャートを持ってないので。
。。。笑>(1)‥‥‥「その図形上の点が条件を満たしていることを確かめる。」とありますが、なぜそれをする必要があるのかイマイチわかりません。
求めた軌跡が、その軌跡上のすべての点とは限らない場合があります。
つまり、軌跡には除外部分(=軌跡の限界)がある場合が多いですから、それがあるかないかを確認する必要があります。
(2)
>「逆に、円(1)上の任意の点は上の計算を逆にたどることによって条件を満たすことがわかる。」
>「逆も成り立つので、」
表現が異なるだけで、答えている内容は同じでしょう。
軌跡の限界に触れなかったりすれば、当然減点の対象でしょうね。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 数学2 軌跡を求める問題の記述について 6 2022/05/11 00:24
- 高校 数Ⅱの軌跡という単元について質問です。 問題の最後に、逆に、この~上の全ての点は条件を満たすとかく場 3 2023/03/21 16:38
- 大学受験 娘の大学受験勉強 6 2022/06/30 19:58
- 数学 AB=2である2定点A、Bに対して、条件AP²-BP²=1を満たす点Pの軌跡を求めよ。という問題です 1 2023/02/25 15:14
- 数学 数学の「命題」の範囲について、問題は解けるのですが理解がイマイチできていないところがあるので質問させ 4 2023/03/03 13:43
- 高校 比例式につきまして 3 2022/05/19 17:30
- 大学受験 長文失礼します 高3受験生女 愛知教育大学理科 (偏差値50 国立)志望です。 先週の共通テスト模試 5 2022/09/13 00:21
- 数学 私立学校に通っている高校一年生です。 高校数学について質問があります。 私は高一の駿台全国模試では1 4 2022/10/25 22:36
- その他(職業・資格) 弁理士試験の勉強方法について 1 2022/09/11 07:32
- 数学 『◯と●の帰納法』 2 2023/04/19 20:57
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
数学得意な人程宝くじ買わない...
-
2980円で買った「15個のリンゴ...
-
344億円かかった「大屋根リング...
-
数ⅱ等式の証明について。 条件...
-
この180➗204の計算の仕方教えて...
-
数学のワークについての質問で...
-
xy平面上の点P(x,y)に対し,点Q(...
-
積分で絶対値が中にあるときっ...
-
【数学】積分したあとに微分す...
-
加法定理の公式
-
サイコロを100回投げて、奇数、...
-
y''+y=1/cos(x)の特殊解の解法...
-
数学者は夜行性か?
-
モンティホール問題について 問...
-
【格子点】旧課程チャート練習1...
-
三角関数ですこれはなぜx=0と...
-
なぜ、Δtがdtではなくdτになる...
-
厄介そうな定積分
-
数学です。267の説明おねがいし...
-
数学の問題です。110で最小値を...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
軌跡の問題の「逆」の記述の仕方
-
ゼミの発表の仕方(数学)
-
数Aを教えてください…! 整数36...
-
中学数学です。 例題にそって解...
-
位数45の群が位数9の正規部分群...
-
大学受験、数学の問題 やさしい...
-
数学の質問です。 青チャ1A例題...
-
高1の数Aです。 条件付き確率の...
-
数学Aで集合の要素の個数の問...
-
可換群ならば正規部分群は成り...
-
群論です
-
数学I 数研教科書 答えについて...
-
数学 写真はある回転体の見取り...
-
写真の数学の質問です。 逆が成...
-
教科書の公式を使うだけの例題...
-
黒までは理解できたのですがピ...
-
青チャート数1aの基本例題52が...
-
代数学の問題
-
写真の数学の質問です。 鉛筆で...
-
交代群A4が位数の部分群を持た...
おすすめ情報