
No.1ベストアンサー
- 回答日時:
まず、極限関数はf(z)=0
sup(z∈D)|fn(z)-f(z)|=sup(z∈D)|z^n|=sup(z∈D)|z|^n=1
なので、sup(z∈D)|fn(z)-f(z)|→0(n→∞)とはならず、Dでは一様
収束しない。
局所一様収束って、Dに含まれる任意の閉集合上で一様収束することで
したっけ?
Dに含まれる任意の閉集合Sはある閉円盤|z|≦r<1に含まれる。
よって、sup(z∈S)|fn(z)-f(z)|=sup(z∈S)|z|^n≦r^n→0(n→∞)
従って、fn(z)はSで一様収束、すなわち、Dで局所一様収束する。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 関数列の収束について 次の問題を教えて欲しいです。 区間[0,1) の関数列fnと関数f(x)につい 1 2022/06/01 08:33
- 計算機科学 連続関数に対するフーリエ級数の収束 1 2022/10/27 23:09
- 数学 解析学の問題です。 「正項級数は収束する、あるいは正の無限大に発散することを示せ。」 単調増加列はそ 2 2022/12/16 05:06
- 数学 画像において、なぜk>1では絶対収束① k≦1でば条件収束②または発散する(正項級数an>0 ならば 15 2022/08/27 19:43
- 数学 位相空間 X において, 点列 {xn} が x∞ に収束しているとき, 集合 {xn; n ∈ N 1 2023/01/17 18:53
- 数学 関数項級数について一様収束するかどうか判定をお願いしたいです。 以下の式のΣ[n=1→∞]についてで 1 2023/01/26 16:32
- 政治 海賊王「ルフィ」に逮捕状が出されたんですか? 5 2023/01/28 10:29
- 数学 一様収束の判定をお願いしたいです。 ①f_n(x)=nx/(1+nx) (0<x=<1) ②f_n( 2 2023/01/26 16:27
- 数学 「f(z)=1/(z^2-1)に関して ローラン展開を使う場合、マクローリン展開を使う場合、テイラー 3 2022/08/27 19:56
- 数学 微分可能 連続 わからない 3 2022/06/22 17:22
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
青の吹き出しの何をどう考えれ...
-
写真は2変数関数の合成微分の公...
-
三角形の面積は、底辺✕高さ÷2 ...
-
この両辺の2Rを払う手順を教え...
-
数学の質問:関数の書き方
-
高校数学について
-
至急 a²b+a-b-1 の因数分解...
-
2980円で買った「15個のリンゴ...
-
数ⅱ等式の証明について。 条件...
-
数学得意な人程宝くじ買わない...
-
この180➗204の計算の仕方教えて...
-
xy平面上の点P(x,y)に対し,点Q(...
-
写真は多変数関数についての「...
-
数学のワークについての質問で...
-
1,189,200円の割引率が0.82500%...
-
なぜ、Δtがdtではなくdτになる...
-
344億円かかった「大屋根リング...
-
【数学】積分したあとに微分す...
-
数学です。267の説明おねがいし...
-
高2です。 数学の問題集につい...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
厄介そうな定積分
-
二重和
-
確率の質問です
-
モンティホール問題について 問...
-
【 畳み込み積分 のτ 意味がよ...
-
数学が得意な人の考え方を知り...
-
この算数問題、何がおかしい? ...
-
サイコロを100回投げて、奇数、...
-
SPI 食塩水の等量交換 完全文系...
-
割り算の不思議
-
足し算のざっくり計算が苦手で...
-
問題 √2が無理数であることを入...
-
なぜ、Δtがdtではなくdτになる...
-
全体100人のうちリンゴ派90人み...
-
新幹線が最高速度に到達するま...
-
これって①番の公式を使うのでし...
-
2.2%は分数で表すと22/1000、約...
-
数学の問題です。110で最小値を...
-
積分について
-
三角関数ですこれはなぜx=0と...
おすすめ情報