
二次関数のグラフの場合分けで、
最大・最小をxの変域を考えて求める問題がいまいち上手くできないので困っています
(たとえばこんな問題です)
問.
f(x)=x2-ax+4(0≦x≦1)の最小値を求めよ。
このような場合、まず考えられるx軸の位置をすべて作図(簡単に)して解いていけばいいのでしょうか??
よろしくお願いします。
ちなみに、私の文章力がないので表現が曖昧になっていて、あまり質問の内容がわかりにくいと思います。
私がわからないのは、一応問題は解けるのですが、時間がとてもかかってしまいます。
そのため、この手の問題を解くためのテクニックを教えていただければ幸いです。
No.1ベストアンサー
- 回答日時:
>f(x)=x2-ax+4(0≦x≦1)の最小値を求めよ。
>このような場合、まず考えられるx軸の位置をすべて作図(簡単に)して解いていけばいいのでしょうか??
その通りです.原則として,どんなに問題に慣れても,位置関係を表すグラフはかきましょう.
>私がわからないのは、一応問題は解けるのですが、時間がとてもかかってしまいます。
そのため、この手の問題を解くためのテクニックを教えていただければ幸いです。
時間がかかるという気持ちはすごく分かります.テクニックというほどでもありませんが,
押さえておくと,場合分けの思考がラクになるものはあります.
たとえば,今回の問題のように x^2 の係数が定数のときは,グラフが
下に凸か,上に凸か決まってしまうので,場合分けは比較的簡単にできます.
この場合はx^2の係数が定数で,0 ≦ x ≦ 1 なので,最小値をとるのは,
(1) 軸 x = a/2
(2) x = 0
(3) x = 1
のどれかのパターンしかありません.
これを踏まえて場合分けの条件を考えると,
(1)で最小値をとるのは,軸が 0 ≦ x ≦ 1 にあるとき.これは簡単.
(2)で最小値をとるのは,軸が 0 ≦ x ≦ 1 になくて,
x = 0 とx = 1 のうち軸から近い方が x = 0 となるときなので,
軸 x = a/2 が 0 ≦ x ≦ 1 の左側,つまり,a/2 < 0 となるとき.
(3)で最小値をとるのは,軸が 0 ≦ x ≦ 1 になくて,
x = 0 とx = 1 のうち軸から近い方が x = 1 となるときなので,
軸 x = a/2 が 0 ≦ x ≦ 1 の右側,つまり,a/2 > 1 となるとき.
という風に考えることができるので,「考えられるx軸の位置をすべて作図」
ときに考える思考が若干ラクになるでしょう.
最大値を求めるときも,同じような考え方で若干ラクができます.
上の問題で最大値をとるのは,
(1) x = 0
(2) x = 1
の2パターンしかありません.
二次関数が軸に関して左右対称のグラフであることを考えると,
軸が 0 ≦ x ≦ 1 の中間より左右のどちらにあるか,つまり,
a/2 ≧ 1/2 のとき,(1)で最大
a/2 < 1/2 のとき,(2)で最大
となります.
最後に,x^2 の係数が定数ではなく,a の場合は,最初に
a > 0 , a < 0
で場合分けをして,その範囲の中で,上の考え方を用いれば
基本的には比較的ラクになると思います.実践してみてください.
実践してみたところなんとかできました
あとはもう少し問題を素早く解けるよう、演習をしていこうと思います。
ご回答ありがとうございました
No.2
- 回答日時:
基本的にはまずは
f(x)=a(x+b)^2+c
の形にもっていって、その概形を書いて求める範囲と軸の位置の関係で場合わけするのがセオリーかと思います。
たとえば、上の問題(最大値も仮に必要なら)でしたら
f(x)=(x-a/2)^2-a^2/4+4 ってな感じででますよね。ここで、軸の位置x=a/2が範囲に含まれるのか右側か左側かを考えます。
右側なら図を書けば明らかなように最小値x=1 最大値x=0のときですよね。
逆に左側なら最小値x=1、最大値x=0のときですよね。
さて、軸が中の場合は下に凸なので当然x=a/2です。ここで最大値なんですが、ひとつは軸が範囲の左よりか右よりかわけて考える方法。もうひとつはg(a)=f(0)-(1)を計算してどちらが大きくなるか範囲を絞っていく方法の二つが考えられますね。後者のような方法は、「グラフが範囲において常に増加か減少しかしていない」というような場合に場合わけをしなくても計算だけで無理やり範囲を限定できますから方法としては便利です。
今回のように最小値だけ必要な場合は、範囲に含まれるか否かで軸で最小かどうかがわかり、あとは含まれない場合は境界のどちらかで最小なので(常に増加か減少)、機械的に上記のようにとけばわかりやすいです。
さて、とくのに時間がかかるという場合は基本的には練習不足でしょうが、考えられるのはいくつか理由があると思います。1)計算が遅い場合2)場合わけが変3)基本的な二次関数の考え方を理解していない
1)の場合はとりあえずがんばってください。
2)の場合は、まずグラフの概形でどのような分け方をするのかきちんと整理してから具体的に取り掛かることを意識します3)については、二次関数のグラフと位置関係(軸に影響するもの、切片に影響するものなど)をもう一度復習する必要があります。
あとは2)の場合のコツですが、できるだけ必要最低限のものであらわすことを意識します。たとえば、今回の問題の場合Y軸は書かないほうがいいです(結果的にはX=0が境界ですがY軸として書いたところでは無関係)また、最小値なのでX軸グラフの相対的な位置関係はあまり意味ないです。そういう場合はグラフの下にでもX軸を引いておけばいいです。
あとは、最小値、最大値といったら上に凸か下に凸とか軸の位置が重要だな、とかX軸と範囲で交わるとかだったら切片も重要だなとかその辺の基礎的な知識は必要です。
まあ、基本は概形を書いてパターンを考えるってことですが、書き方にもコツがあったりするのでその辺は問題集とか、問題の解説でいわゆる”行間を読む”ことを意識して勉強してコツをつかむことです。
だいたいはわかりました。
多分私は場合分けが変なパターンなのでもう少し問題演習をしてみようと思います。
ご回答ありがとうございました。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
極大値・極小値 を英語で
-
aを正の定数とし、f(x)=x²+2(a-...
-
なぜ、最小値がないのかが分か...
-
正と負の数値が混在する中で、...
-
3σと最大値,最小値
-
(2)aは正の定数とする。0≦x≦aに...
-
三角関数について 関数y=√7sinx...
-
x(x-1)(x-2)(x-3)の最大値と最...
-
3つの無理数a,b,cでf(x)=x^3+ax...
-
(2)の問題を解くときに、最初...
-
excelのグラフでY軸の最小値を...
-
条件付き極値問題といわれる問...
-
2次不等式の問題を教えてください
-
三角関数の問題教えてください...
-
はめあいの『最大すきま』と『...
-
最大値最小値場合分けで質問で...
-
二次関数の場合分けの上手な考え方
-
最大値も最小値も持たない関数...
-
箱ひげ図
-
数学II sinθ=tとおくと0≦θ<2πで...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
3つの無理数a,b,cでf(x)=x^3+ax...
-
極大値・極小値 を英語で
-
マルチディスプレイ【2台】に...
-
①とても初歩的なことなのですが...
-
aを正の定数とし、f(x)=x²+2(a-...
-
ヒストグラムを作るんですけど ...
-
至急お願いします
-
数学 2時間数に関わる問題につ...
-
範囲の始まりと終わりの値の名称
-
正と負の数値が混在する中で、...
-
3σと最大値,最小値
-
x(x-1)(x-2)(x-3)の最大値と最...
-
y=-|x-2|+3のグラフで 問題 ...
-
数学の質問です。 実数x、yが x...
-
レーダーチャートの軸
-
数学の表記の表し方で最大値と...
-
Excelグラフ作成方法を教えてく...
-
なぜ、最小値がないのかが分か...
-
はめあいの『最大すきま』と『...
-
三角関数の問題教えてください...
おすすめ情報