痔になりやすい生活習慣とは?

相関について質問があります
AとBについて
(例えば車の速度をAという機械で測った場合と
Bという簡易測定機で測った場合)
AとBに関して数字が同じだった場合は正式には何と言うのでしょうか?

AとBの相関性が(は?)高い(強い?)
高い(強い)相関関係が得られた(認められた)

よろしくお願いします

A 回答 (1件)

相関性は、有る・無い‥で言い表します。



ただしその、有る・無い‥は、その相関における近似値の基準で判断するため、何をパラメーター(要因)とすかで値や基準が変わります。

いずれにしても、相関というのは、強い・弱い、高い・低い‥という言い方や考え方のようなグレーゾーンを設ける判断方法ではないという事です。
    • good
    • 3

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q相関の強さの表し方

2点質問があります。文系人間ですので、簡単に表現してくれると有り難いです。


1.2つの変数の相関関係の強さがどれくらいかを、説明する場合にどのような方法があるのでしょうか。

2.某サイトで相関関係の強さについて、「相関係数の絶対値の大きさが0.7~1.0だと強い相関、0.4~0.7だとやや相関あり、0.2~0.4だと弱い相関あり、0~0.2だとほとんど相関なし」というものを見つけたのですが、これは統計学的に一般的に言われていることなのでしょうか。何か確認できる書物などをご存知でしたら教えてください。
 

Aベストアンサー

こんにちは.質問順番を入れ替えて回答します.

<2.相関係数の言語的評価>
例えば『心理学のためのデータ解析テクニカルブック』などに書かれています.数値に多少変動はありますが(0.0~0.3などのように),おおよそ一般的な基準です.統計解析法の入門書には大抵書かれています.

(実際には…)
ただ,あるテストで60点をとった場合,その人の能力やテストの難易度によって,その60点に対する評価が変動するように(人によっては「高い」あるいは「低い」点と考える場合がありますね),相関係数の値も本来はそのデータ領域の特性を考えて解釈しなければなりません.この点を相関係数を実務で使う人は十分理解しているので,上記の言語的評価を目安程度に使っています.このためある領域では0.5を高い相関があると解釈することもあれば,同値をあまり関連性がなかったと解釈する場合もあります.

なお,相関係数のイメージ的理解としては,二つの変数ABの場合,変数Aが単独に作業した量と変数Bが単続に作業した量の積の中で,変数ABが一緒に働いたときの作業量の割合と考えてもらうのがいいでしょう(あまりイメージ的理解でもありませんが…).

<1.相関係数の説明>
一般的に相関係数と呼ばれるものはピアソンの積率相関係数です.この相関係数は直線的関係を示していますので,二つの変数の点をプロット図に描くと良いと思います.

== 正・負の「完全:|r|=1」相関図 ==========================

  <正の完全相関:r=1>      <負の完全相関:r=-1>

  │       *        │ *
  │      *         │  *
  │     *          │   *
  │    *           │    *
  │   *            │     *
  │  *             │      *
  │ *              │       *
  └─────────       └────────

  ・正の相関:ある変数が増加(減少)すれば他の変数も増加(減少)
  ・負の相関:ある変数が増加(減少)すれば他の変数は減少(増加)

=============================================================
※図が歪んでいるかもしれないので,上記の図をコピー&貼り付けで適当な文章ソフトに貼り付け,等幅フォント(MSゴシック)に修正して下さい.

上記のように「完全に直線状になっていれば[1]」となります.
なお傾きについては,右上がりか,左上がりかというという大雑把な解釈をする程度に留めてください(傾きの程度も重要な情報ですが,多少数学的知識を入れないと説明できないので).
実際のデータをプロット図に示し,「どの程度直線的か,傾きはどちら向きか」という観点で説明するのはどうでしょうか?

こんにちは.質問順番を入れ替えて回答します.

<2.相関係数の言語的評価>
例えば『心理学のためのデータ解析テクニカルブック』などに書かれています.数値に多少変動はありますが(0.0~0.3などのように),おおよそ一般的な基準です.統計解析法の入門書には大抵書かれています.

(実際には…)
ただ,あるテストで60点をとった場合,その人の能力やテストの難易度によって,その60点に対する評価が変動するように(人によっては「高い」あるいは「低い」点と考える場合がありますね),相関係数の値...続きを読む

Q相関係数についてくるP値とは何ですか?

相関係数についてくるP値の意味がわかりません。

r=0.90 (P<0.001)

P=0.05で相関がない

という表現は何を意味しているのでしょうか?
またMS Excelを使ってのP値の計算方法を教えてください。

よろしくお願い致します。

Aベストアンサー

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場合はp=0.1%でもいいと思いますが)
相関係数においても相関の有無を結論つけるにはそのrが偶然出る確率を出すか、5%の確率ならrがどれぐらいの値が出るかを知っておく必要が有ります。

>r=0.90 (P<0.001)

相関係数は0.90と計算された。相関がないのに偶然r=0.90 となる確率は0.001以下だと言ってます。

>P=0.05で相関がない

相関がないと結論。(間違っている確率は5%以下)だと言ってます。

エクセルでの計算ですが、まず関数CORRELを使ってr値を出します。xデータがA1からA10に、yデータがB1からB10に入っているとして

r=CORREL(A1:A10,B1:B10)

次にそのr値をt値に変換します。

t=r*(n-2)^0.5/(1-r^2)^0.5

ここでnは組みデータの数です。((x1,y1),(x2,y2),・・・(xn,yn))
最後に関数TDISTで確率に変換します。両側です。

p=TDIST(t値,n-2,2)

もっと簡単な方法があるかも知れませんが、私ならこう計算します。(アドインの分析ツールを使う以外は)

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場...続きを読む

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Q対数変換する意味?

私は数学が苦手な文系大学生です。最近「地域分析」という本を読んでいるのですが、たびたび数式を「対数変換すると・・・」と言う風に話が進みます。対数変換をすることの意味がわからないので内容が理解できません。

まず、対数変換とは何なのか?対数変換を行なうと何がどのように変わるのでしょうか?
また、一般的に対数変換とはどのような目的で行なわれるのでしょうか?

ということを文系の学生にわかりやすく教えていただけないでしょうか。
対数変換の内容を理解していないため、質問が的を得ていないかもしれませんが、よろしくお願いします。(また、ここで説明できるような内容でなければ、その旨をお伝えください。)

Aベストアンサー

まず、ここで論じられている「対数」が「常用対数」を意味する
ことを前提として話を進めましょう。

対数に変換するということは、ある数値を
任意の底の値の指数値で表すことを意味します。
具体的に言うと(ここでは常用対数に限定することにしたので)、
ある数値が10(これが常用対数の底の値)の何乗であるのか
ということです。

たとえば、100という数値の常用対数を取ると、
100は10の2乗ですから、「2」となります。
同様に1000は「3」、10000は「4」です。

このように表現すると、正の数値で1以下の小数から
万や億などの非常に大きい値に散らばる数値サンプルを
整理したり表現するのに非常に便利です。

また、対数にしてグラフを作ると、上記のように非常に
大きな数(または0.00000・・・・のように非常に小さい数)
を限られた紙面上でプロットする事ができます。
もしそのプロットした結果が直線になった場合、
その直線の傾きでサンプルの近似式を導き出すこともできます。

具体的例を挙げると、身近なものではpH値。
これはある液体の単位量あたりどのくらい水素イオンが
含まれるかを対数表現したものです。
(厳密には、モル濃度で表した水素イオン濃度の逆数の常用対数)

まとめると、対数は小数から数万・億などの広範囲に散らばる
数値を整理するために使われる道具とお考えになられたら
良いと思います。

まず、ここで論じられている「対数」が「常用対数」を意味する
ことを前提として話を進めましょう。

対数に変換するということは、ある数値を
任意の底の値の指数値で表すことを意味します。
具体的に言うと(ここでは常用対数に限定することにしたので)、
ある数値が10(これが常用対数の底の値)の何乗であるのか
ということです。

たとえば、100という数値の常用対数を取ると、
100は10の2乗ですから、「2」となります。
同様に1000は「3」、10000は「4」です。

この...続きを読む

Q加重平均と平均の違い

加重平均と平均の違いってなんですか?
値が同じになることが多いような気がするんですけど・・・
わかりやす~い例で教えてください。

Aベストアンサー

例えば,テストをやって,A組の平均点80点,B組70点,C組60点だったとします.
全体の平均は70点!・・・これが単純な平均ですね.
クラスごとの人数が全く同じなら問題ないし,
わずかに違う程度なら誤差も少ないです.

ところが,A組100人,B組50人,C組10人だったら?
これで「平均70点」と言われたら,A組の生徒は文句を言いますよね.
そこで,クラスごとに重みをつけ,
(80×100+70×50+60×10)÷(100+50+10)=75.6
とやって求めるのが「加重平均」です.

Q最大値のあるセルの行番号のみを求めたいです。

エクセル2000を使用しています。
OSはXP HOMEです。
よろしくお願いします。

下のようになっているとします。
そこで二つの質問をさせていただきます。



    A        B    C
1    13
2    10
3    64
4    50
5    12

B5にA1:A5の最大値の行番号を表示させるには関数を用いてどのようにあらわせばよいでしょうか?
※上記の例ですとB5には「3」が表示されるはずです。

また、C5にはA1:A5の最大値が示されているセルの行番号からどれだけ隔たりがあるかを表示させたいと思います。
※上記の例ですとC5の行番号は「5」最大値のセルはA3ですので、行番号は「3」。
「5-3=2」となりC5には2が表示されるはずです。


お分かりの方がいらっしゃいましたらお願い申し上げます。

Aベストアンサー

B5の式は
=MATCH(MAX(A1:A5),A1:A5,0)
でしょうね。

Q拘らず・関わらず??

すみません。以前から気になっていたので正しい答えを教えていただけないでしょうか。

「かかわらず」という言葉の漢字変換なのですが,
例えば

 雨が降ったにも「かかわらず」,彼は傘を差さずにやってきた。

というような文の場合,正しいのは「関わらず」「拘らず」どちらでしょうか。

国語辞典で調べてみたのですが,よく分からなくて(+_+)
すみませんがよろしくお願いします。

Aベストアンサー

「物書き」のひとりです。

まず、重要なことですが、「関・係・拘」のすべてが常用漢字ではありますが、その音訓表に「かか(わる)」がないことです。常用漢字は、「こうしなくてはいけない」といった性格のもではありませんが、一応、すべての文章を書き表す場合の指針ではあります。音訓表に無いものの代表的なもの(よく使われるもの)として「全(すべ)て」「画(えが)く」「〇〇に依(よ)れば/拠(よ)れば」などが思いつきます。

本件の「関・係・拘」に関して言えば、「係」に「かか」の読みが認められているのみです。それも「かかわる」でなく「かかる」です。「人命に係(かか)る問題」「係(かか)り結び」など。前者は、「人命にかかわる問題」のように表記されることもありますが、この場合(常用漢字の基準では)「係わる」でなく「かかわる」です。

結論としては、「それにもかかわらず」などにおける「かかわらず」は仮名書きが無難でしょう。漢字の場合は「拘わらず」が正しいといえます。ただし、パソコンでは「関わらず」と変換されることが多いようですネ。

漢字の場合、「関係」という言葉があるように、「関わる」と「係わる」の用法はほとんど区別がつきません。一般的に言えることは、「関わる」「係わる」は肯定的にも否定的(「関わらない」「係わらない」)にも使いますが、「拘わらず」は、肯定的に用いられる例が少ない、ということです。

ただし、肯定的な「拘わる」が誤りだと言っているのではありません。念のため。

「物書き」のひとりです。

まず、重要なことですが、「関・係・拘」のすべてが常用漢字ではありますが、その音訓表に「かか(わる)」がないことです。常用漢字は、「こうしなくてはいけない」といった性格のもではありませんが、一応、すべての文章を書き表す場合の指針ではあります。音訓表に無いものの代表的なもの(よく使われるもの)として「全(すべ)て」「画(えが)く」「〇〇に依(よ)れば/拠(よ)れば」などが思いつきます。

本件の「関・係・拘」に関して言えば、「係」に「かか」の読みが認められてい...続きを読む

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む

QWord 文字を打つと直後の文字が消えていく

いつもお世話になっています。
Word2000を使っているものです。
ある文書を修正しているのですが,文章中に字を打ち込むと後ろの字が消えてしまいます。
分かりにくいですが,
「これを修正します。」
という文章の「これを」と「修正します。」の間に「これから」という単語を入れたときに,その場所にカーソルを合わせて「これから」と打つと,
「これをこれからす。」
となってしまいます。
他の文書では平気です。
何か解決する方法があれば教えて下さい。

Aベストアンサー

入力モードが「挿入」(普通の入力)から、「上書き」になってしまっているのだと思われます。
キーボードに[Insert]というキーがあると思いますので、1度押してみてください。


人気Q&Aランキング