出産前後の痔にはご注意!

ヤコビ行列はなんなのか何の意味があるのか全く分かりません。教えてください。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

簡単のために2変数のケースを考えみます。

多変数の場合も同様に考えて拡張できます。
さて、変数x,yが共に別の変数u,vの2変数関数としますと
x=x(u,v) より dx=(∂x/∂u)du+(∂x/∂v)dv (1)
y=y(u,v) より dy=(∂y/∂u)du+(∂y/∂v)dv (2)
となりますね。これを行列(マトリックス)で表すと
|dx|=|∂x/∂u ∂x/∂v||du| (3)
|dy| |∂y/∂u ∂y/∂v||dv|
となります。(3)は変数u,vの微小増分を変数x,yの微小増分に変換する変換行列となります。この変換行列をヤコビ行列と呼び、またその行列式を関数行列式とかヤコビアンと呼んでいます。
ところでヤコビ行列のメリットですが、例えば多重積分の、直交座標変数から極座標変数に置き換える場合がありますが、まさにその際、変数の変換行列としてヤコビアンが活躍することになります。
この状況を以下に簡単な具体例で示します。
[例]球の体積(V)を求める。
x=rsinθcosφ,y=rsinθsinφ,z=rcosθ (4)
V=∫dxdydz=∫Jdrdθdφ (5)
ここでJはヤコビアンで
J=
  |xr xθ xφ|  (但しxr=∂x/∂r、以下同様)
  |yr yθ yφ|
  |zr zθ zφ|
の行列式を計算すると
J=r^2sinθ (6)
となります。これを(5)に代入して、積分範囲に注意して積分を実行すると(r,θ,φはそれぞれ独立変数ですから楽に積分が実行できます)
V=(4/3)Πr^3 (7)
と求まります。(5)式の変数x,y,zを積分することから考えるとはるかに楽に求めることができますね。
    • good
    • 13

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qヤコビアンとはなんですか?

ヤコビアンとはなんですか?
数学が苦手でなかなか理解できないのでできるだけわかりやすく解説してください。
どうやって出しているのかもできたら教えてください。

Aベストアンサー

例えば、dxdyというものをx、y→r、θのように変数変換したとき、後者は次元が一個落ちる。それを補う際の比率をヤコビアンが与えるという意味かな。

円筒座標ならr、球座標ならr^2sinθといったようになる。
一般の変数変換ときにも成り立つように、偏微分を使った行列式(ヤコビアン)を使ってあらわされるんだよ。

Qヤコビアン(関数行列式)について 高度な数学の質問になります

座標変換のことについての質問です。
現在、テンソル解析をしていて、
y=f(x1,x2,x3)
x=g(y1,y2,y3)
の座標変換を考えています。

この二つの座標変換が、可逆で、一対一対応していることを説明したいのですが・・・。

この際、関数行列式(ヤコビアン)が0になってしまうと、逆行列が存在せず、
逆変換が、出来なくなってしまうようなのですが、これはどうしてなのでしょうか?

そもそもヤコビアンが0になってしまうと逆変換が出来なくなると言う認識は正しいでしょうか?

ヤコビアンが0になると、逆行列が出来なくなる理由、逆変換が出来なくなる理由を、簡単でもかまいませんので、
教えてください。

Aベストアンサー

>ヤコビアンが0になってしまうと逆変換が出来なくなると言う認識

ヤコビアン≠0は、逆変換が存在する十分条件であって、必要条件ではありません。
例えば、実3次元の変換 f : (u, v, w) → (u^3, v^3, w^3) は可逆ですが、
(u, v, w) = (0, 0, 0) で ヤコビアン=0 になります。
可逆な座標変換について考察するときは、そういうモノまで含めると煩瑣になるので、
ヤコビアン≠0 を仮定して、対象を限定してしまうことが多いのです。

>逆変換が出来なくなってしまうようなのですが、これはどうしてなのでしょうか?

逆変換ができないのは、もとの変換が一対一対応でない場合です。
次数を落として1次元の場合を考えると、わかり易いのでは?
y = f (x) のヤコビアンは f ' (x) ですが、
f ' (x) = 0 となる x を含む区間では、f () の逆関数はどうなるでしょうか。
f (x) = x^2 などの具体例で考えましょう。

>逆行列が出来なくなる理由、逆変換が出来なくなる理由を

逆行列が出来なくなる理由は、ヤコビアン(=ヤコビ行列式)が0のとき
ヤコビ行列が正則でないからです。ここが難しいなら、線型代数を復習しましょう。
高校の教科書でも十分だと思います。

逆変換が出来なくなる理由は、極大雑把には、座標変換は一点の近傍では
その点でのヤコビ行列を掛ける一次変換のようなもの(~で近似できる)なので、
ヤコビ行列が不可逆なら変換も不可逆だということです。正式な定理は参考URLを。

参考URL:http://en.wikipedia.org/wiki/Inverse_function_theorem

>ヤコビアンが0になってしまうと逆変換が出来なくなると言う認識

ヤコビアン≠0は、逆変換が存在する十分条件であって、必要条件ではありません。
例えば、実3次元の変換 f : (u, v, w) → (u^3, v^3, w^3) は可逆ですが、
(u, v, w) = (0, 0, 0) で ヤコビアン=0 になります。
可逆な座標変換について考察するときは、そういうモノまで含めると煩瑣になるので、
ヤコビアン≠0 を仮定して、対象を限定してしまうことが多いのです。

>逆変換が出来なくなってしまうようなのですが、これはどうして...続きを読む

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Qヤコビ行列式とは?

ヤコビ行列式∂(x、y)/∂(r、θ)と
∂(r、θ)/∂(x、y)をx、yの関数およびr、θの関数の2通りの式で求めたいのだが変数がたくさんある上に、偏微分の意味がいまいち分かってないのでやり方を教えてください。ヤコビ行列式ってなんですか?

Aベストアンサー

#2のKENZOUです。
ヤコビ行列式∂(x,y)/∂(r,θ)をきちんと書くと
∂(x,y)/∂(r,θ)≡|∂x/∂r ∂x/∂θ|  (1)
         |∂x/∂r ∂x/∂θ|
ですね。ここで≡はと定義されるというような意味です。 x=rcosθ,y=rsinθ  (2)
ですからrとθでそれぞれ偏微分すると
 ∂x/∂r=cosθ,∂x/∂θ=-rsinθ  (3)
 ∂y/∂r=sinθ,∂y/∂θ=rcosθ
となります。これを(1)に代入すると
 ∂(x,y)/∂(r,θ)≡|cosθ -rsinθ|  (4)
          |sinθ  rcosθ|
ヤコビ行列式の値を|∂(x,y)/∂(r,θ)|と書くと
 |∂(x,y)/∂(r,θ)|=rcos^2θ+rsin^2θ=r (5)
>∂(r,θ)/∂(x,y)が何故行列式になるんですか?計算方法が読んでも理解できませんでした。
(4)式より
 ∂(r,θ)/∂(x,y)={∂(x,y)/∂(r,θ)}^-1
         =|cosθ -rsinθ|^-1
          |sinθ  rcosθ|
         =(1/r)×
           |rcosθ -sinθ|  (5)
           |-sinθ  cosθ| 
ここで逆行列の計算方法を使いました。これについては適当な線形代数のテキストを参照してください。

参考URL:http://oshiete1.goo.ne.jp/kotaeru.php3?q=725812

#2のKENZOUです。
ヤコビ行列式∂(x,y)/∂(r,θ)をきちんと書くと
∂(x,y)/∂(r,θ)≡|∂x/∂r ∂x/∂θ|  (1)
         |∂x/∂r ∂x/∂θ|
ですね。ここで≡はと定義されるというような意味です。 x=rcosθ,y=rsinθ  (2)
ですからrとθでそれぞれ偏微分すると
 ∂x/∂r=cosθ,∂x/∂θ=-rsinθ  (3)
 ∂y/∂r=sinθ,∂y/∂θ=rcosθ
となります。これを(1)に代入すると
 ∂(x,y)/∂(r,θ)≡|cosθ -rsinθ|  (4)
          |sinθ  rcosθ|
ヤコビ行列式の値を|∂(x,y)/∂(r,θ)...続きを読む

Q線形・非線形って何ですか?

既に同じようなテーマで質問が出ておりますが、
再度お聞きしたく質問します。

※既に出ている質問
『質問:線形、非線型ってどういう意味ですか?』
http://oshiete1.goo.ne.jp/kotaeru.php3?q=285400
結局これを読んでもいまいちピンと来なかった...(--;


1.線形と非線形について教えてください。
2.何の為にそのような考え方(分け方)をするのか教えてください。


勝手なお願いですが、以下の点に留意いただけると大変うれしいです。
何せ数学はそんなに得意ではない人間+歳なので...(~~;

・わかりやすく教えてください。(小学生に説明するつもりぐらいだとありがたいです)
・例をあげてください。(こちらも小学生でもわかるような例をいただけると助かります)
・数式はなるべく少なくしてください。

『そんな条件じゃ説明できないよー』という方もいると思いますが、どうぞよろしくお願いいたしますm(__)m

Aベストアンサー

昨日「線形の方がなんとなくてわかりやすくないですか」と書いたんですが、やっぱり理系の人間らしく、もうちょっときちんと説明してみます。昨日は数式をなるべく出さないように説明しようとがんばったんですが、今日は少しだけ出しますが、勘弁してください。m(__)m(あと、長文も勘弁してください)


数学的にはちょっとここまで言えるかわかりませんが、自然界の法則としては、「線形」が重要な意味を持つのは、xの値が変化するにつれて変化するyがあったときに、

(yの増加量)/(xの増加量)=A(一定)

という規則が成り立つからです。

xやyの例としては昨日の例で言う例1だとxがガムの個数、yが全体の金額、例2だとxが時間、yが走った距離です。

この規則が何で役に立つかというと、式をちょっと変形すると、

(yの増加量)=A×(xの増加量)・・(1)

ということがわかります。つまり、Aの値さえわかれば、xが増えたときのyの値が容易に推測できるようになるわけです。


ここで「Aの値さえわかれば」と書いていますが、この意味を今から説明します。

自然界の法則を調べるためには何らかの実験を行います。例えば、りんごが木から落ちる運動の測定を行います。
ここから質問者様がイメージできるかわかりませんが、りんごは時間が経つにつれて(下に落ちるにつれて)落下するスピードが速くなるんです。今、実験として、1秒ごとにりんごのスピードを測定したとします。そしてその結果をグラフにプロットしていくと、直線になることがわかります。(ここがわかりにくいかもしれませんが、実際に実験を行うとそのようになるのです)

数学の問題のように初めから「時速100kmで走る」とか「1個100円のガム」とかいうことが与えられていれば直線になることはすぐにわかります。
しかし、自然界の法則はそうもうまくいきません。つまり、実験を行ってその結果をプロットした結果が直線状になっていたときに初めて「何らかの法則があるのではないか」ということがわかり、上で書いた「Aの値さえわかれば」の「A」の値がプロットが直線状になった結果、初めてわかるのです。

そして、プロットが直線状になっているということは、永遠にそうなることが予想されます。つまり、今現在はりんごが木から落ちたときしか実験できませんが、その結果を用いて、もしりんごが雲の上から落としたときに地面ではどのくらいのスピードになるかが推測できるようになるわけです。ここで、このことがなぜ推測できるようになるかというと、(1)で書いた関係式があるからです。このように「なんらかの法則があることが推測でき、それを用いて別の事象が予言できるようになる」ことが「線形」が重要だと考えられる理由です。

しかし、実際に飛行機に乗って雲の上からりんごを落としたらここで推測した値にはならないのです。スカイダイビングを想像するとわかると思いますが、最初はどんどんスピードが上がっていきますが、ある程度でスピードは変わらなくなります。(ずっとスピードが増え続けたら、たぶんあんなに空中で動く余裕はないでしょうか??)つまり、「線形から外れる」のです。

では、なぜスピードが変わらなくなるかというと、お分かりになると思いますが、空気抵抗があるからなんですね。(これが昨日「世の中そううまくはいかない」と書いた理由です)つまり、初めは「線形」かと思われたりんごを落とすという実験は実際には「非線形」なんです。非線形のときは(1)の関係式が成り立たないので、線形のときほど容易には現象の予測ができないことがわかると思います。


では、非線形だと、全てのことにおいて現象の予測が難しいのでしょうか?実はそうでもありません。例えば、logは非線形だということをNo.5さんが書かれていますが、「片対数グラフ」というちょっと特殊な形のグラフを用いるとlogや指数関数のグラフも直線になるんです。つまり、普通のグラフでプロットしたときに「非線形」になるため一見何の法則もないように見えがちな実験結果が「片対数グラフ」を用いると、プロット結果が「線形」になってlogや指数関数の性質を持つことが容易にわかり、それを用いて現象の予測を行うことが(もちろん単なる線形よりは難しいですが)できるようになるわけです。


これが私の「線形」「非線形」の理解です。つまり、

1) 線形の結果の場合は同様の他の事象の推測が容易
2) 非線形の場合は同様の他の事象の推測が困難
3) しかし、一見非線形に見えるものも特殊な見方をすると線形になることがあり、その場合は事象の推測が容易である

このことからいろいろな実験結果は「なるべく線形にならないか」ということを目標に頑張ります。しかし、実際には先ほどの空気抵抗の例のように、どうしても線形にはならない事象の方が世の中多いんです。(つまり、非線形のものが多いんです)

わかりやすいかどうかよくわかりませんが、これが「線形」「非線形」を分ける理由だと思っています。

やっぱり、「線形の方がなんとなくわかりやすい」くらいの理解の方がよかったですかね(^^;;

昨日「線形の方がなんとなくてわかりやすくないですか」と書いたんですが、やっぱり理系の人間らしく、もうちょっときちんと説明してみます。昨日は数式をなるべく出さないように説明しようとがんばったんですが、今日は少しだけ出しますが、勘弁してください。m(__)m(あと、長文も勘弁してください)


数学的にはちょっとここまで言えるかわかりませんが、自然界の法則としては、「線形」が重要な意味を持つのは、xの値が変化するにつれて変化するyがあったときに、

(yの増加量)/(xの増加量)=...続きを読む

Q「ノルム、絶対値、長さ」の違いについて

あじぽんと申します。よろしくお願いします。

ベクトルや複素数などに出てくる「ノルムと絶対値と長さ」というのは同じことを違う言葉で表現しているのでしょうか?
手元にある書籍などには全てが同じ式で求められています。
同じ式で表現されていても意味は少しづつ違っていたりするのでしょうか?

よろしくお願いします。

Aベストアンサー

どれも同じような性質を持ちますが、違いの1つとして定義される空間が違います。

「絶対値」は、実数や複素数といった「数」に対して定義されます。
定義は、一通りしかありません。
ベクトルに対して、絶対値を求めるという言い方をする場合もあるかもしれませんが、それはベクトルの長さを表す記号に絶対値の記号を利用する場合があるからであり、参考書にも文章として「ベクトルの絶対値」という言い方はあまりされていないのではないでしょうか?



「長さ」というのは、空間にある「線」に対して定義できます。
数に対しては「長さ」という言い方はあまり聞かないと思います。
例えば、「3」の長さというような言い方は耳になじまないと思います。
一方、ベクトルの場合は、「矢印」という「線」になりますので「長さ」が定義できます。



最後の「ノルム」は、線形空間に対して定義できます。(もちろん実数、複素数やベクトルも線形空間です)
ノルムの条件を満たせばノルムになるため、複数のノルムが考えられます。
そのため、「(1,1)というベクトルに対するノルムは?」
という質問に対しては、「どのノルムを使うか?」という条件が欠けているため厳密に言うと「解答はできません」。
例としてよく扱われるノルムは「ユークリッドノルム」と言われ、通常のベクトルの長さと等しくなります。

ベクトルに対するノルムでは、「最大値ノルム」というのが他の例としてよく使われます。
これは、ベクトルの各要素の最大値で定義されます。
(例:(3,1,5)というベクトルの最大値ノルムは、3つの数字の最大値である5になります)

ノルムというと、線形空間であれば定義できるため、
f(x) = 3x^2+5x
という数式に対するノルムというのも考えられます。
(数式は、定数倍したり、足し算したりできますよね)
数式に対して「絶対値」とか「長さ」と言ってもピンと来ないですよね。

しかし、まだやられていないかもしれませんが、数式に対するノルムというのは存在します。


そうすると、なんでこんなんがあるねん。って話になると思います。

ここで、ベクトルに対してある定理があったとします。

それがさっきのような数式など他の線形空間でも成り立つんだろうか?
というのを考えるときに「ノルム」の登場です。

その定理の証明で、「ベクトル」として性質を使わずに「ノルム」の性質だけを使って証明ができれば、
それは「ベクトル」に対する証明でなくて「ノルムを持つもの」に対する証明になります。
(ちょっと難しいかな?)


このようにして、定理の応用範囲を広げるために「長さ」や「絶対値」の考え方をベクトルだけでなく「線形空間」という広い考え方に適用できるようにしたのが「ノルム」になります。

どれも同じような性質を持ちますが、違いの1つとして定義される空間が違います。

「絶対値」は、実数や複素数といった「数」に対して定義されます。
定義は、一通りしかありません。
ベクトルに対して、絶対値を求めるという言い方をする場合もあるかもしれませんが、それはベクトルの長さを表す記号に絶対値の記号を利用する場合があるからであり、参考書にも文章として「ベクトルの絶対値」という言い方はあまりされていないのではないでしょうか?



「長さ」というのは、空間にある「線」に対して...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Qヤコビアンの解りやすい説明が書いてある参考書か、よければ此処で教えてください。

大学の微分積分を独学で勉強しているのですが、どうも、ヤコビアンがよくわかりません。今後、統計学も学ぼうと思っているのですが、どうも、線形変換、変数変換の理解ができていないと大きくつまずくような気がするのです。
特に、同時分布において確率密度関数から確率を求める場合、かならず2重積分が必要になるし、相関係数とか共分散を求める場合にも関係するのではないのかと思います。

特に、わからないと感じるのは全微分の逆と考えられるのか?とか、置換積分のように逆に計算できるのかなど今ひとつ直観的にわからない点です。どなたか良いアドバイスお願いします。

Aベストアンサー

 #3,4です。画像が見にくかったと思います。ここの画像アップの扱いは難しいですね・・・。

>上の説明ではj^-1だが2重積分においては|j|になるのか?・・・

 混乱しやすい所で、わかりにくい説明をして御免なさい。1変数の場合、置換積分は、

  ∫F(x)・dx=∫F(f(u))・df/du・du

になりますが(x=f(u))、df/duが、1変数の場合のdetJになるのは、おわかりだと思います。このとき考えている変換は、x→uではなくて、u→xです。なので、前回の記述では変換を、

>u=f(x,y),v=g(x,y)

ではなくて、

  x=f(u,v),y=g(u,v)

と書けば良かったと思います。これのヤコビ行列をJとすれば、

  ∬F(x,y)・dxdy=∬F(f(u,v),g(u,v))・detJ・dudv

となり、ご紹介したリンクの直感的意味も、納得頂けると思います。

 以下、余談です。
 線形代数を自力で学ぶ場合、線形代数における行列式論の「位置付け」がわかりにくいかも知れません。ふつうに言う線形代数の内容は、一部中途半端な面があります。というのは、それはテンソル(多重線形代数)を含まない事になっているからです。しかし、行列式の正体はじつはテンソルです。でも、ふつうの線形代数は何よりも、連立一次方程式の解法から始まったので、「線形代数の道具としての」行列式を導入せざる得ない事情もあります。
 線形代数における行列式論は、テンソルからの(そうだと言わない)密輸入という事になり、線形代数の理論構成上は、非常に「浮いた立場」にいます。なので、行列式の定義などでは、「これはこういうものなのだ」とある程度割り切って、読む必要が生じます。こういう事は大学に行けば、たぶん講義の余談として教えてもらえるのだと想像しますが、そこが独学の辛いところです。

 最後に、ヤコビアンの計算で固有値を持ち出す理由ですが、次の定理が理由と思います。

  行列式の値は、その行列の固有値の積になる.

 手計算を行う限り上記は、余り便利とは思えませんが、理論的にはこうなります。直接行列式を展開するのと、固有値を計算するのは、どっちもどっちという場合も多いですが、仰る例題は違うのかも知れまんね。例題を教えて頂ければ、お応えできると思います。

 #3,4です。画像が見にくかったと思います。ここの画像アップの扱いは難しいですね・・・。

>上の説明ではj^-1だが2重積分においては|j|になるのか?・・・

 混乱しやすい所で、わかりにくい説明をして御免なさい。1変数の場合、置換積分は、

  ∫F(x)・dx=∫F(f(u))・df/du・du

になりますが(x=f(u))、df/duが、1変数の場合のdetJになるのは、おわかりだと思います。このとき考えている変換は、x→uではなくて、u→xです。なので、前回の記述では変換を、

>u=f(x,y),v=g(x,y)

...続きを読む

Q行列の正定・半正定・負定

行列の正定・半正定・負定について自分なりに調べてみたのですが、
イマイチ良くわかりません。。。
どなたか上手く説明していただけないでしょうか?
過去の質問の回答に

>cを列ベクトル、Aを行列とする。
>(cの転置)Ac>0
>となればAは正定値といいます。
>Aの固有値が全て正であることとも同値です。

とあったのですが、このcの列ベクトルというのは
任意なのでしょうか?
また、半正定は固有値に+と-が交じっていて、
負定は固有値が-のみなのですか?

どなたかお願いしますorz

Aベストアンサー

まず、行列の正定・半正定・負定値性を考えるときは、
行列は対称行列であることを仮定しています。
なので、正確な定義は、

定義 n次正方 "対称" 行列 A が正定値行列であるとは、
『ゼロベクトルではない任意の』n次元(列)ベクトル c に対して、
(cの転置)Ac>0
となることである。

です。

対称行列Aが正定値なら、その固有値はすべて正です。
(cとして固有ベクトルをとってみればよいでしょう。)
逆に、対称行列Aの固有値がすべて正なら、Aは正定値行列です。

ただし、対称行列ではないAの固有値がすべて正だからといって、
(cの転置)Ac>0とは限りません。
例えば、
A =
[ 1 4 ]
[ 0 1 ]
とすると、Aは対称行列ではなく、固有値は1です。
しかし、
(cの転置) = [ 1, -2]
とすると、
(cの転置)Ac = -3 < 0
となってしまいます。(実際に計算して確かめてください。)
なので、行列Aが対称行列であるという条件はとても重要です。

また、半正定値の定義は、上の定義で
『ゼロベクトルではない任意の』 --> 『任意の』
と書き直したものです。
このとき、半正定値行列の固有値はすべて0以上です。(つまり0も許します。)
逆に、対称行列の固有値がすべて0以上なら、その行列は半正定値です。

さらに、負定値の定義は、『ゼロではない任意の』ベクトルcに対して
(cの転置)Ac<0
となることです。
固有値についてはもうわかりますね。

まず、行列の正定・半正定・負定値性を考えるときは、
行列は対称行列であることを仮定しています。
なので、正確な定義は、

定義 n次正方 "対称" 行列 A が正定値行列であるとは、
『ゼロベクトルではない任意の』n次元(列)ベクトル c に対して、
(cの転置)Ac>0
となることである。

です。

対称行列Aが正定値なら、その固有値はすべて正です。
(cとして固有ベクトルをとってみればよいでしょう。)
逆に、対称行列Aの固有値がすべて正なら、Aは正定値行列です。

ただし、対称行列...続きを読む

Qロボットアームが特異点付近で暴走する理由

ロボットアームが特異点付近で暴走する理由を
教えていただけますでしょうか。

特異点ではヤコビの逆行列が求まらないのはわかるのですが、
特異点近傍で関節角速度が急激に大きくなる理由がわかりません。

よろしくお願いいたします。

Aベストアンサー

今晩は。

こちらの資料(http://www.mech.tohoku-gakuin.ac.jp/rde/contents/course/robotics/manipulator.html)の 「ヤコビ行列で見るロボットの特性」に記述されている説明が分かりやすいと思いますがいかがでしょうか?


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング