工程能力指数(CP)についての質問です

CP値を判断する基準として 下記の条件がある事は認識していますが

     Cp<1.00 量産不可能
 1.00<Cp<1.33 改善必要
 1.33<Cp<1.67 量産可能
 1.67<Cp     検査規格の変更

この条件は 3σを前提とした条件でしょうか


Cp値の公式は

 Cp=(規格上限値-規格下限値)/6σ      6σ=±3σ

ですが

 Cp=(規格上限値-規格下限値)/4σ      4σ=±2σ

で計算する事は可能でしょうか


仮に可能であった場合

2σや4σでCP値を求めると
上記の条件の数値は変わってくるのでしょうか

わかりにくい質問ですが
回答をお願いします

このQ&Aに関連する最新のQ&A

A 回答 (3件)

回答頂いた


「2σを分母(幅は4σ)にすれば,4.5%程度不良が出る工程であっても,Cp=1となります」
この理屈が理解出来ていません.

正規分布表を見ると次のことが理解できます.

1σの内側には68.3%の確率で入る
2σなら95.5%
3σなら99.3%

ここから,2σの外側は両側で4.5%ということが言えます.

もう少し,詳しく説明します.

あなたの工場のある工程の図面規格が
上限10,下限6とします.

今,流動している製品を抜き取り検査したら,
平均μ=8,標準偏差σ=1でした.

(1)不良率はどれだけと想定されますか?
平均から規格までは両側とも2でこれは2σに相当します.
規格内には95.5%が入ります.
逆に4.5%は規格外となり,検査不良になります.

(2)工程能力はいくらですか?
規格幅4を6σで割ります.σ=1ですから,
Cp=4/6=0.666
大幅な工程能力不足です.

ここで,ご質問のように,Cpの計算式を変えてみましょう.
つまり4σで割るのです.σ=1ですから,
Cp=4/4=1

現状は,大幅な工程能力不足なのにも関わらず,
勝手に定義式を変えれば,Cp=1となります.
これを社外に言えますか?

定義式は変えてはなりません.
    • good
    • 0
この回答へのお礼

わかりやすい説明ありがとうございます
 
説明の上手さに驚きました
ありがとうございます

お礼日時:2011/04/23 20:35

#1です.



6%不良→4.5%不良程度ですね.
失礼しました.
    • good
    • 1
この回答へのお礼

回答ありがとうございます
 
とても嬉しいです
 
朝早い時間に投稿されているので驚きました
 
勉強不足で恥ずかしいのですが
 
回答頂いた
「2σを分母(幅は4σ)にすれば,4.5%程度不良が出る工程であっても,Cp=1となります」
 
この理屈が理解出来ていません
 
4.5%は どのように算出されたのでしょうか
 

お礼日時:2011/04/21 23:18

もちろん.変わってきます.


2σを分母(幅は4σ)にすれば,6%程度不良が出る工程であっても,Cp=1となります.

上記の条件(改善の要否など)が変わるかどうかですが,
そもそも,計算式を変更することはないので,
条件は変わるものではありません.

工程能力指数は,JIS Z 8101 で規定された尺度です.
(現在はISOとして国際的に通用する)
上記のような,都合の良い計算をして,
「わが社の工程はCp=○○ です.」
なんて言うことは許されないですね.
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QCpとCpkの計算方法

ExcelでCpとCpkの計算の式を作りたいのですが、どのようにすればいいでしょう。上限規格値は0.8、平均は0.746、標準偏差は0.008です。工程のことは全く知らないのでお願いします。

Aベストアンサー

http://techon.nikkeibp.co.jp/article/WORD/20060516/117140/
http://homepage1.nifty.com/QCC/sqc4/sqc4-cpk.htm

下限規格値はないのですよね?

Cpkのほうは、
Cpk = (上限規格値 - 平均値)/(3×標準偏差)
 = (0.8-0.746)/(3×0.008)

片側の規格しかないので、Cpの概念は不適かもしれません。
無理矢理に考えれば、
Cp = 規格幅/(6×標準偏差)
 = (上限規格-平均値)/(6×標準偏差)
 = (0.8-0.746)×2/(6×0.008)
ですけど、規格の中心が定まってなく、仮に平均値を規格中心としただけなので、Cpkと同じになっちゃいますから、あまり意味ないっすね。


エクセルでやるとすれば、
たとえば、
A1に 上限規格値 と文字入力
A2に 平均 と文字入力
A3に 標準偏差 と文字入力
A4に Cpk と文字入力
A5に Cp と文字入力
B1に0.8と数値入力
B2に0.746と数値入力
B3に0.008と数値入力
B4に =(B1-B2)/3/B3 という式を入力
B5に =(B1-B2)*2/6/B3 という式を入力

http://techon.nikkeibp.co.jp/article/WORD/20060516/117140/
http://homepage1.nifty.com/QCC/sqc4/sqc4-cpk.htm

下限規格値はないのですよね?

Cpkのほうは、
Cpk = (上限規格値 - 平均値)/(3×標準偏差)
 = (0.8-0.746)/(3×0.008)

片側の規格しかないので、Cpの概念は不適かもしれません。
無理矢理に考えれば、
Cp = 規格幅/(6×標準偏差)
 = (上限規格-平均値)/(6×標準偏差)
 = (0.8-0.746)×2/(6×0.008)
...続きを読む

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

Q±4σに入る確率について教えてください

ウィキペディアの検索より、
確率変数XがN( μ, σ2)に従う時、平均 μ からのずれがσ以下の範囲にXが含まれる確率は68.26%、2σ以下だと95.44%、さらに3σだと99.74%となる。
と分かりました。

そこで
4σ、


の場合確率はどうなるか教えてください。
よろしくお願い致します。

Aベストアンサー

Excel で NORMDIST を使い、平均 50、標準偏差 10 (いわゆる偏差値)で計算してみましたら、次のようになりました。

 σ 0.682689492137086
2σ 0.954499736103641
3σ 0.997300203936740
4σ 0.999936657516326
5σ 0.999999426696856
6σ 0.999999998026825
7σ 0.999999999997440
8σ 0.999999999999999
9σ 1.000000000000000

Excelの関数の精度がどの程度のものか分かりませんが、9σで100%になりました。

QCpkのk(偏り)値をExcelで出すには・・・。

規格中心値:1095.5mm
交差:±0.2mm
AVG:1095.57mm
Max:1095.70mm
Min:1095.31mm

以上の値の時、CpkのkをExcelで求めようとした場合、どのように数式を組めばよいか教えてください。

素人のため、わかりやすくお願いします。

Aベストアンサー

K = |(規格上限値+規格下限値)/2-平均値|/((規格上限値-規格下限値)/2) で求まると思います。
標本Max値、Min値は不要ではないかしら。
質問例では
K = |(1095.7+1095.3)/2-1095.57|/(1095.7-1095.3)/2 = 0.07/0.2 = 0.35
Cpk = (1-K)Cp となります。

QCpとCpkの差について

私の理解が間違えていたら正してください。
とある工程で、Cp=5、Cpk=4という結果が出ました。
数字だけ見るとかなり良いですし、実際に規格外の製品が出来上がる可能性は限りなくゼロに近いと思います。しかしながら、確率分布曲線を描いてみると、狙い値通りの製品が出来上がる確率も1%に満たない、となりました。
さらに、この工程がCp=6、Cpk=4と移行した場合、バラツキは狭まった代わりに平均値が狙い値から離れ、狙い値通りの製品が出来上がる確率はほぼゼロとなりました。
規格外の製品を作らないという点では問題ないと思いますが、狙い値どおりの製品を作るという視線から考えると、こういうトレンド(Cpkが変わらずCpの値が上昇する)はあまり好ましくないと思うのですが、考え方は合っているでしょうか。
そもそも、確率分布曲線のXY軸の意味を良く理解していないかも知れません。
『X軸は狙い値をセンターとして、実際の値、Y軸はX軸のそれぞれの出来上がり寸法での発生率』と理解しています。
例えば上限値=3σであれば、上限ギリギリの製品が出来上がる確率は0.13%。

私の理解が間違えていたら正してください。
とある工程で、Cp=5、Cpk=4という結果が出ました。
数字だけ見るとかなり良いですし、実際に規格外の製品が出来上がる可能性は限りなくゼロに近いと思います。しかしながら、確率分布曲線を描いてみると、狙い値通りの製品が出来上がる確率も1%に満たない、となりました。
さらに、この工程がCp=6、Cpk=4と移行した場合、バラツキは狭まった代わりに平均値が狙い値から離れ、狙い値通りの製品が出来上がる確率はほぼゼロとなりました。
規格外の製品を作らないとい...続きを読む

Aベストアンサー

Cpは工程能力指数、Cpkはカタヨリを考慮した工程能力指数です。
だから、実際上はCpがいくら高くなっても、Cpkが変わらないなら、
あまり意味がないといえると思います。

一般的には、Cp(Cpk)は1.33または1.66以上あればよく。
それ以上は、オーバー品質(必要のない品質にコストをかけすぎ)ということか、
もともと、規格上限下限の決め方に問題があったということになります。
あとは、宇宙産業など高い安全率を見込まなければならない場合ですね。

まあ、良いものをわざわざ悪くすることはないので、Cpを低くする必要はないのですが、
今の段階でCpを高くするように努力よりは、
平均値イコール狙い値になるほうに努力したほうがいいのではないでしょうか。

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む

Q工業製品の抜き取り検査のN数の決め方

実際に今起きている話ですが、例えばあるロットの一部を1箇所切り出して測定し、規格10以下に対して9であったため合格として納入したところ、客先で同じロットの別の場所からサンプリングし、検査した所、11であったらしく、このロットはNG扱いとなってしまいました。流出防止策として、安易な考えで”ロットの一部を1箇所切り出して測定し、8以上の場合は再サンプリングして判定する”としましたが、統計的に、再度サンプリングするための閾値の決め方やN数の決め方はどのようにすべきでしょうか?検査の工数増をできるだけ避けたいので、むやみやたらとN増しは行いたくなく、かといって仮に数十箇所測定して1箇所だけ規格外があっても、工場としては納品したいのが本音です。工場、客先双方が納得できる落としどころがあればよいのですが。

Aベストアンサー

今回の質問の前提条件を確認したいです.

抜き取り検査が許されているということは,普通は工程能力が十分あることが
確認されていると思います.そうでなければ抜き取り検査ではなく,全数検査する必要が
あるはずです.

今回の結果は「11」とは,規格上限に対して外れていたということでしょうか.
それとも規格上限には余裕があった上で,取り決めた数値に対して外れていたということ
でしょうか.(そうでなければ品質管理としては理屈がなっていないですが)

先ずはこの製品の工程能力がどんなものかそれがスタートです.



>仮に数十箇所測定して1箇所だけ規格外があっても、工場としては納品したいのが本音です

気持ち的には分かるところもありますが,こんなことを了解していては品質管理が分かっていない,
もしくは無視していることにしかならないと思いますが.

Q統計的工程管理

仕事で工程管理の勉強を始めました。
基礎的な用語なんですけど分かりません、教えてください。
(1)工程能力指数のCpとCpkとの違いが分かりません。どちらも同じ意味なのでしょうか?
(2)PpとPpkは何を意味するのでしょうか?

教えて下さい、宜しくお願します。

Aベストアンサー

(1) Cpは工程能力指数(Process Capability Index)のことで、工程でのデータ分布と規格との数的関係を表したものです。通常、
Cp=(上限規格値-下限規格値)/6s
    s=工程データの標準偏差
で計算されます。
ただし、このCpはデータの分布の中心(=平均値)が上限規格値と下限規格値の中央にあることが前提となっていて、ズレは考慮されていません。
そこで、平均値が上下規格の中心からずれている(=かたより)場合に用いる指標として、Cpkが作られました。

Cpk=(1-K)Cp

  |平均値-(規格上限値+規格下限値)/2|
K=--------------------------------------
   (規格上限値+規格下限値)/2

  |・・|は絶対値

です。したがって、偏りがない場合(平均値が上下規格値の中央と一致)はK=0で、Cp=Cpkですが、ズレが大きいほど、工程能力指数は下がります。

(2) Ppは工程性能指数(Process Performance Index)といわれ、アメリカのGMなどが提唱するQS9000という規格で使われているものです。
QS9000では、上記のCpの式で計算したものをPpと呼びます。ではCpはどうなるのかというと、上記式のsの部分が Rbar/d2 となります。これはX-R管理図から求めるもので、統計上、郡内変動を表します。これに対して、Ppはデータの標準偏差を使うところに違いがあります。
PpkはCpkと同様で、
Ppk=(1-K)Pp
Kの計算は上記と同じです。

QS9000では工程管理の一貫として管理図を使うことが書かれているため、管理図から工程能力指数を出そうとしたようです。そのため、工程管理でわかる工程能力とサンプリングデータによる工程能力を分ける意味で、PpとCpを作ったようです。

ちなみに、どの指数も、1以下では工程能力がないと判断され、QS9000では2以上が目標とされます。

(1) Cpは工程能力指数(Process Capability Index)のことで、工程でのデータ分布と規格との数的関係を表したものです。通常、
Cp=(上限規格値-下限規格値)/6s
    s=工程データの標準偏差
で計算されます。
ただし、このCpはデータの分布の中心(=平均値)が上限規格値と下限規格値の中央にあることが前提となっていて、ズレは考慮されていません。
そこで、平均値が上下規格の中心からずれている(=かたより)場合に用いる指標として、Cpkが作られました。

Cpk=(1-K)Cp

  |平...続きを読む

Q3σ法による計算式

当方、管理や統計学など全く無知ですのでわかりやすく教えて下さい。

仕事で、管理図を作成するにあたり、3σ法で管理限界線(UCL,LCL)を計算せよとの事を言われましたが、理解出来てません。

3σ法の公式とかあるんでしょうか?あったら教えて下さい。あと、3σとは何か、簡単に教えて下さい

Aベストアンサー

まず、3σというのは、σの3倍のことです。
そして、σというのが、「標準偏差」といわれるもので、これはばらつきの大きさを表すものです。

計算方法などは、
http://www.mbanavi.com/school/stat04.htm
最近では、excel で計算してしまうという手もあります。(が、それでは意味がつかみにくいかも)
基本的には、
1)全体の平均をとる
2)個々のデータと平均との差を求める(この大小がばらつきに相当)
3) 2)でとった個々のデータについての差を2乗する(プラス・マイナスの影響をなくすため)
4)それを、(データの数-1)で割る(気持ちとしては、ばらつきの量を平均した感じ・データの数-1で割るのは、「母標準偏差の推定」という考え方があるから)
5) 3)でばらつきを2乗しているので、それをルートで開いて元に戻す

とうことになります。

統計上いくつかの前提があって、例えば、製造工程で普通にものを作った場合、いろいろなばらつきは、それぞれ独立に出ます。
そこで、結果的には、ある一定の平均値付近のものが多くでき、平均値から外れたものは、少しだけどできるという形になる場合が多いのです。
この場合、誤差が本当の意味での「ばらつき」であれば、これは、「正規分布」という分布(つまり、平均値付近が多く、それから離れると少なくなっていくような)をします。

この「正規分布に従う」という前提で、平均値±3σの間には、全体の、99%強 が含まれるというのが、統計的に知られています。
これを以て、3σで管理という事になります。


さて、「管理図」ということですが、いろいろな種類のものがあります。
そこで、普通は、UCL, LCL は、製品自体の規格値(か、それから算出された値)を使うので、直接、3σは出てこない気がするのですが。
考えられるのは、x-s (平均と、標準偏差の管理図)で、標準偏差に対する上限管理値が3σなのかなと。(この場合、下限の管理値はありません。0が理想なので)

まず、3σというのは、σの3倍のことです。
そして、σというのが、「標準偏差」といわれるもので、これはばらつきの大きさを表すものです。

計算方法などは、
http://www.mbanavi.com/school/stat04.htm
最近では、excel で計算してしまうという手もあります。(が、それでは意味がつかみにくいかも)
基本的には、
1)全体の平均をとる
2)個々のデータと平均との差を求める(この大小がばらつきに相当)
3) 2)でとった個々のデータについての差を2乗する(プラス・マイナスの影響をなくすため...続きを読む

QJIS/ISO規格に基づくサンプル数の考え方・決め方

部品の温度上昇に関する試験依頼がありました。
サンプル数については依頼がありませんでしたが、
ISO規格、JIS規格等に基づく根拠を明確にして
説明することが求められています。

ISO規格、JIS規格に基づくサンプル数の決め方、計算方法、
根拠等についてアドバイスいただきますようお願い申しあげます。

Aベストアンサー

以下に詳細がありますのでご覧下さい。
http://homepage1.nifty.com/QCC/2003-3.html
http://aql.blog19.fc2.com/blog-entry-15.html

業務なら
「JIS Z 9015」そのものをご覧になられては
いかがでしょうか?


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報