問題
x>0のとき、e^x>1+x+x^2/2を証明せよ。
解答例
f(x)=e^x-1-x-x^2/2とおくと、f '(x)=e^x-1-xであり、f ''(x)=e^x-1である。
x>0のとき、
f ''(x)>0より、x≧0でf '(x)は単調増加である。・・・A
f '(0)=0より、x>0で、f '(x)>0・・・(1)
さらに(1)より、x≧0でf (x)は単調増加であり、f(0)=0より、x>0で、f(x)>0
よって、x>0のとき、e^x>1+x+x^2/2が成り立つ。
質問
Aの部分についてです。問題は『x>0のとき、』の証明を求めているので、
『f ''(x)>0より、x>0でf '(x)は単調増加である。』では、ダメなのでしょうか。つまり、等号は不要なのではないですか。
仮に、等号が必要だとしても、Aの部分は『f ''(x)>0、かつ、f ''(0)=0より、x≧0でf '(x)は単調増加である。』とするべきではないですか。
高校生向けのご教授をお願い致します。
A 回答 (2件)
- 最新から表示
- 回答順に表示
No.2
- 回答日時:
ちょっとした言い回しの問題ですね。
「f'(x) は単調増加だから、x > 0 で f'(x) > f'(0) = 0」と
話を持っていくためには、f'(x) と f'(0) を比較する根拠として
「x ≧ 0 で f'(x) は単調増加」と言っておく必要があるのです。
そうでないと、x > y > 0 に対して f'(x) > f'(y) としか言えない。
y = 0 を代入する代わりに f'(x) ≧ lim[y→0]f'(y) = 0 と
してみたところで、極限をとるときに > が ≧ に変わってしまうので、
f(x) が狭義単調増加でなく広義単調増加になってしまい、
e^x ≧ 1+x+x^2/2 でなく e^x > 1+x+x^2/2 であることが
すっきり出ない。(f'(x) > 0 となる x が実際に存在することを経由して
ゴタゴタと説明できないではありませんが…)
「単調増加」を使うのではなく、平均値定理を直接使って、
x > 0 で f''(x) > 0 より f'(x) - f'(0) = f''(c) x > 0
(0 < c < x) とするのなら、x > 0 から x > 0 へと話をつなげて
よいのです。
回答有り難うございます。
「x > y > 0 に対して f'(x) > f'(y) としか言えない」という点を理解していませんでした。お陰様で理解出来ました。
ありがとうございました。
No.1
- 回答日時:
>f ''(x)>0より、x≧0でf '(x)は単調増加である。
・・・A次への準備として、f(x)の導関数f'(x)を考えたい関数としたいわけです。
>f '(0)=0より、x>0で、f '(x)>0・・・(1)
ここで、f'(0)=0を使いたいわけですね。そして、f'(0)の正の近傍を含めた単調増加を使って、正のxについて必ずf'(x)が正であることを使いたいので、比較対象となるf'(0)=0、つまりx=0の場合を含めておきたい。
もしそうしないとなると、「ε>0なる、x>0であるどんなxに対してもx>εであるようなεを考えて、……」と長々とやる必要性が出てきます。比較対象としてのf'(0)の値が使えないとすると、そうするしかありません。
x=0について、f(0), f'(0), f"(0)のいずれでも存在して計算可能ですし、実際、f'(0)=0は簡単に計算できて、マイナスでないことから、この証明のためにはそうするメリットはありません。
ですから「x≧0」としておけば、証明が簡潔で明瞭になるので、そうしてあるわけです。
回答有り難うございます。
「比較対象となるf'(0)=0、つまりx=0」が必要ということを、お陰様で理解出来ました。
ありがとうございました。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
それもChatGPT!?と驚いた使用方法を教えてください
仕事やプライベートでも利用が浸透してきたChatGPTですが、こんなときに使うの!!?とびっくりしたり、これは画期的な有効活用だ!とうなった事例があれば教えてください!
-
【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
【お題】・忍者がやってるYouTubeが炎上してしまった理由
-
自分独自の健康法はある?
こうしていると調子がいい!みたいな自分独自の健康法、こだわりはありますか?
-
この人頭いいなと思ったエピソード
一緒にいたときに「この人頭いいな」と思ったエピソードを教えてください
-
「これいらなくない?」という慣習、教えてください
現代になって省略されてきたとはいえ、必要性のない慣習や風習、ありませんか?
-
数学の微分の範囲で 増減を調べる問題の答えは≧(イコールがついてる)のに 凹凸を調べる問題の答えは>
数学
-
単調増加、単調減少の x の範囲
数学
-
なぜ両辺が負の時に両辺を二乗してはダメなんですか? また、この式は合っていますか? a>0 b>0よ
数学
-
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【大喜利】【投稿~1/20】 追い込まれた犯人が咄嗟に言った一言とは?
- ・洋服何着持ってますか?
- ・みんなの【マイ・ベスト積読2024】を教えてください。
- ・「これいらなくない?」という慣習、教えてください
- ・今から楽しみな予定はありますか?
- ・AIツールの活用方法を教えて
- ・【選手権お題その3】この画像で一言【大喜利】
- ・【お題】逆襲の桃太郎
- ・自分独自の健康法はある?
- ・最強の防寒、あったか術を教えてください!
- ・【大喜利】【投稿~1/9】 忍者がやってるYouTubeが炎上してしまった理由
- ・歳とったな〜〜と思ったことは?
- ・ちょっと先の未来クイズ第6問
- ・モテ期を経験した方いらっしゃいますか?
- ・好きな人を振り向かせるためにしたこと
- ・【選手権お題その2】この漫画の2コマ目を考えてください
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・これまでで一番「情けなかったとき」はいつですか?
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
高校数学において、 「y=f(x)...
-
関数の増減: ある区間で常にf‘(...
-
極限を求める
-
導関数の応用について
-
微分 不等式の証明 なぜ等号?
-
厳密な増加関数とは
-
三次関数、四次関数の概形について
-
X2乗+Xの解き方について
-
外イキはなぜ1回しか出来ないの...
-
1日あける 一日置き 違いは何で...
-
m2の出し方を教えてください
-
1kgの10%は?
-
(x+1)3乗と (x2乗+1)(x+1)(...
-
数学 PERT図
-
f(x,y)=(x^3 -y^2)/(2x-y) とい...
-
よく解けない漸化式の問題で絶...
-
自動紙送り装置
-
食塩水の問題です。教えてくだ...
-
連続率について
-
隔年と毎年の違いを教えてくだ...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
関数f(x)の増減の範囲で、 f'(x...
-
極限を求める
-
関数の増減: ある区間で常にf‘(...
-
関数f(x)が区間0≦x≦1で単...
-
高校数学において、 「y=f(x)...
-
三次関数、四次関数の概形について
-
微分 不等式の証明 なぜ等号?
-
f(x)=x^2の3乗根(x^2/3)の最大...
-
厳密な増加関数とは
-
増加関数について
-
関数 f(x)=x3乗−3ax2乗 が x>1 ...
-
二次導関数が単調に増加すると...
-
急成長しているベンチャー企業...
-
三次関数の最大値・最小値
-
関数f(x)を単調増加または単調...
-
関数f(x)=x^ 3−3ax^2+3bx−2 ...
-
増加、減少を繰り返し数が収束...
-
方程式、不等式
-
二回微分して 上に凸下に凸 が...
-
写真の赤線のところがわかりま...
おすすめ情報